Redis Python library guide

Connect your Python application to a Redis database

redis-py is the Python client for Redis. The sections below explain how to install redis-py and connect your application to a Redis database.

redis-py requires a running Redis or Redis Stack server. See Getting started for Redis installation instructions.

You can also access Redis with an object-mapping client interface. See RedisOM for Python for more information.

Install

To install redis-py, enter:

pip install redis

For faster performance, install Redis with hiredis support. This provides a compiled response parser, and for most cases requires zero code changes. By default, if hiredis >= 1.0 is available, redis-py attempts to use it for response parsing.

Note:
The Python distutils packaging scheme is no longer part of Python 3.12 and greater. If you're having difficulties getting redis-py installed in a Python 3.12 environment, consider updating to a recent release of redis-py.
pip install redis[hiredis]

Connect

Connect to localhost on port 6379, set a value in Redis, and retrieve it. All responses are returned as bytes in Python. To receive decoded strings, set decode_responses=True. For more connection options, see these examples.

r = redis.Redis(host='localhost', port=6379, decode_responses=True)

Store and retrieve a simple string.

r.set('foo', 'bar')
# True
r.get('foo')
# bar

Store and retrieve a dict.

r.hset('user-session:123', mapping={
    'name': 'John',
    "surname": 'Smith',
    "company": 'Redis',
    "age": 29
})
# True

r.hgetall('user-session:123')
# {'surname': 'Smith', 'name': 'John', 'company': 'Redis', 'age': '29'}

Connect to a Redis cluster

To connect to a Redis cluster, use RedisCluster.

from redis.cluster import RedisCluster

rc = RedisCluster(host='localhost', port=16379)

print(rc.get_nodes())
# [[host=127.0.0.1,port=16379,name=127.0.0.1:16379,server_type=primary,redis_connection=Redis<ConnectionPool<Connection<host=127.0.0.1,port=16379,db=0>>>], ...

rc.set('foo', 'bar')
# True

rc.get('foo')
# b'bar'

For more information, see redis-py Clustering.

Connect to your production Redis with TLS

When you deploy your application, use TLS and follow the Redis security guidelines.

import redis

r = redis.Redis(
    host="my-redis.cloud.redislabs.com", port=6379,
    username="default", # use your Redis user. More info https://redis.io/docs/latest/operate/oss_and_stack/management/security/acl/
    password="secret", # use your Redis password
    ssl=True,
    ssl_certfile="./redis_user.crt",
    ssl_keyfile="./redis_user_private.key",
    ssl_ca_certs="./redis_ca.pem",
)
r.set('foo', 'bar')
# True

r.get('foo')
# b'bar'

For more information, see redis-py TLS examples.

Example: Indexing and querying JSON documents

Make sure that you have Redis Stack and redis-py installed. Import dependencies:

import redis
from redis.commands.json.path import Path
import redis.commands.search.aggregation as aggregations
import redis.commands.search.reducers as reducers
from redis.commands.search.field import TextField, NumericField, TagField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType
from redis.commands.search.query import NumericFilter, Query

Connect to your Redis database.

r = redis.Redis(host='localhost', port=6379)

Let's create some test data to add to your database.

user1 = {
    "name": "Paul John",
    "email": "paul.john@example.com",
    "age": 42,
    "city": "London"
}
user2 = {
    "name": "Eden Zamir",
    "email": "eden.zamir@example.com",
    "age": 29,
    "city": "Tel Aviv"
}
user3 = {
    "name": "Paul Zamir",
    "email": "paul.zamir@example.com",
    "age": 35,
    "city": "Tel Aviv"
}

Define indexed fields and their data types using schema. Use JSON path expressions to map specific JSON elements to the schema fields.

schema = (
    TextField("$.name", as_name="name"), 
    TagField("$.city", as_name="city"), 
    NumericField("$.age", as_name="age")
)

Create an index. In this example, all JSON documents with the key prefix user: will be indexed. For more information, see Query syntax.

rs = r.ft("idx:users")
rs.create_index(
    schema,
    definition=IndexDefinition(
        prefix=["user:"], index_type=IndexType.JSON
    )
)
# b'OK'

Use JSON.SET to set each user value at the specified path.

r.json().set("user:1", Path.root_path(), user1)
r.json().set("user:2", Path.root_path(), user2)
r.json().set("user:3", Path.root_path(), user3)

Let's find user Paul and filter the results by age.

res = rs.search(
    Query("Paul @age:[30 40]")
)
# Result{1 total, docs: [Document {'id': 'user:3', 'payload': None, 'json': '{"name":"Paul Zamir","email":"paul.zamir@example.com","age":35,"city":"Tel Aviv"}'}]}

Query using JSON Path expressions.

rs.search(
    Query("Paul").return_field("$.city", as_field="city")
).docs
# [Document {'id': 'user:1', 'payload': None, 'city': 'London'}, Document {'id': 'user:3', 'payload': None, 'city': 'Tel Aviv'}]

Aggregate your results using FT.AGGREGATE.

req = aggregations.AggregateRequest("*").group_by('@city', reducers.count().alias('count'))
print(rs.aggregate(req).rows)
# [[b'city', b'Tel Aviv', b'count', b'2'], [b'city', b'London', b'count', b'1']]

Learn more

RATE THIS PAGE
Back to top ↑