
Q3 2021

tdwi.org

By James Kobielus

Sponsored by

Ten Mistakes to Avoid
In NoSQL

https://redis.io

1 tdwi.org

FOREWORD

© 2021 by TDWI, a division of 1105 Media, Inc. All rights reserved. Reproductions in whole or in part are
prohibited except by written permission. Email requests or feedback to info@tdwi.org.

Product and company names mentioned herein may be trademarks and/or registered trademarks of their
respective companies. Inclusion of a vendor, product, or service in TDWI research does not constitute an
endorsement by TDWI or its management. Sponsorship of a publication should not be construed as an
endorsement of the sponsor organization or validation of its claims.

Ten Mistakes to Avoid
In NoSQL

By James Kobielus

NoSQL is a key pillar in many organizations’
data architectures. Over the past 20 years,
this segment of the data platform market
has emerged to support a wide range of
requirements for which traditional relational
database management systems are not optimal.

NoSQL has gained traction in enterprises
to support diverse emerging requirements,
including big data analytics, unstructured
data sources, low-latency web interactivity,
application interconnectivity, data streaming,
caching, time-series analysis, and behavioral
graph analysis. Increasingly, NoSQL platforms
support enterprise DataOps functions such as
content ETL. Contrary to popular belief, many
NoSQL platforms support query through SQL
or SQL-like languages.

NoSQL refers to a wide range of data platform
architectures optimized for specific use cases
rather than an all-purpose platform for all
enterprise requirements. Under the NoSQL
umbrella, many industry observers group such
approaches as document, wide-column, key-
value, and graph databases. What all NoSQL
data platforms have in common is support for

nonrelational data models, horizontal scaling,
and eventual consistency.

This TDWI report identifies the chief mistakes
enterprise IT and data managers often make
with deployment and operation of these
platforms. This report recommends ways
DevOps, developers, enterprise IT architects,
and data management practitioners can avoid
these mistakes in their own NoSQL initiatives.

https://tdwi.org

2 tdwi.org

1
NoSQL platforms are application stores
for specific use cases, not enterprise data
repositories for every application.

Most NoSQL feature sets are designed to meet
the demands of online applications, such as
personalization, online catalogs, mobile-first
applications, and fraud detection. Likewise,
NoSQL data platforms are not a full substitute
for relational databases in handling strongly
guaranteed atomic, consistent, independent,
durable (ACID) transactions. Instead, NoSQL
platforms tend to compromise consistency
in favor of scalability, availability, partition
tolerance, and speed.

Nevertheless, NoSQL data platforms are well
suited to a wide range of use cases. To avoid
choosing the wrong data platform for a specific
use case, organizations should assess their
requirements for:

• Interactivity. The steady rise in user
demands for on-demand, real-time, and
instantaneous experiences and closed-
loop process optimization in all online
applications has spurred demand for key-
value stores and other data platforms
optimized for interactivity. For example,
e-commerce and gaming applications
depend intimately on interactivity.

• Latency. The shift of most use cases
toward near-real-time, real-time, and
stream processing has raised the
importance of in-memory, wide-column
(a NoSQL segment), key-value store
(another NoSQL segment), and other low-
latency data architectures optimized for
speed. In-memory data architectures are
accelerating queries, interactive exploration,
event management, stream computing, and
caching.

• Transactionality. The intensifying
pervasiveness of OLTP, ERP, CRM, and
e-commerce applications has highlighted
the value of RDBMSs, NewSQL databases,
and other platforms that can support
ACID transactions. Most NoSQL databases
support eventually consistent transactions,
under which updates to various replicas
will be observed eventually, though some
may support strongly eventual consistency
(which guarantees that any two replicas
that have received the same unordered set
of updates will be in the same state). To
the extent that a NoSQL platform—such
as a document database or wide-column
database—supports strong, guaranteed-

MISTAKE ONE:
APPLYING NOSQL PLATFORMS TO USE CASES FOR WHICH OTHER DATA
PLATFORMS ARE BETTER SUITED

Continues

https://tdwi.org

3 tdwi.org

consistent ACID transactions, it is often
through a converged architecture, such
as a lakehouse, that overlaps with these
other segments.

• Scalability. The never-ending growth in
data volumes, processing throughputs,
query concurrency, mixed workloads,
and platform decentralization has made
scalability a prime criterion in every data
platform category. Horizontal scalability—
through sharding and eventual consistency—
is a prime advantage of NoSQL platforms.
The specific scalability profile depends
on the particulars of how a database was
engineered and deployed, of course.

• Heterogeneity. The adoption of
unstructured and semistructured data
sources, types, and formats has placed a
fresh emphasis on document databases (a
type of NoSQL platform), distributed file
stores, and other data platforms that can
flexibly ingest, transform, cleanse, index,
search, and manage it all.

• Temporality. The ongoing convergence
of historical, real-time, and predictive
analytics has put the focus on wide-column
databases (a type of NoSQL platform), time-
series databases, event stores, and other
platforms optimized for these workloads.

• Contextualization. The need for rich data
contextualization has spurred demand for
graph databases that are optimized for
geographic, social, semantic, behavioral,
influence, and other analytical contexts.
This is a NoSQL segment.

Continued

https://tdwi.org

4 tdwi.org

Many NoSQL platforms scale horizontally
into petabytes (and beyond) and are optimized
for querying, managing, and processing
unstructured, semistructured, and other
data types.

These features alone might tempt enterprise
data professionals to use NoSQL clusters to
persist great amounts of random data without
a clear application in mind. Rather than let
their NoSQL clusters become the proverbial
data swamp—which can become prohibitively
expensive to maintain—organizations must be
clear about what types of data can or should
be persisted in their NoSQL clusters, for how
long, and with what downstream applications.

To avoid deploying a NoSQL platform that
ends up as a costly, underutilized data swamp,
enterprises should:

• Ensure that NoSQL data remains
trusted. NoSQL platforms can serve as
powerful collection points for a vast and
growing range of data sources. However,
business analysts, data scientists, and
other users may choose not to use the
data in a NoSQL store if they do not trust
that data. The best way to keep NoSQL
platforms from becoming data swamps
is to ensure that new data can be loaded
only if it is from a pre-approved source.

In addition, all new data can be loaded
into a NoSQL platform only if it has been
cleansed at the source or completed a
rigorous ETL process to confirm it is fit for
its downstream purpose.

• Align NoSQL deployments with data
monetization strategies. Data held in
NoSQL stores is a core component of
many business decisions, outcomes, and
products. NoSQL platforms can easily
become costly overhead unless enterprises
keep in mind how they figure into a larger
data monetization strategy. If every piece
of NoSQL-persisted data has a potentially
monetizable use, the dreaded swamp
scenario is less likely to materialize, and the
more useless data will be purged to make
way for data that can directly or indirectly
generate fresh revenues. Chief among
monetizable uses of NoSQL data are
driving better operational decision support,
improving the efficacy of new AI-based
applications, and bundling into new
revenue-bearing products. For the same
reason, more businesses are providing
fresh data for licensing through cloud data

MISTAKE TWO:
IMPLEMENTING A NOSQL PLATFORM WITHOUT THE FORESIGHT TO KEEP IT FROM
DEGENERATING INTO A DATA SWAMP2

Continues

https://tdwi.org

5 tdwi.org

marketplaces, thereby monetizing these
resources beyond any bottom-line payoff
from operational uses.

• Move, archive, and purge less-
frequently accessed data from
in-production NoSQL platforms. NoSQL
data should be managed like any data
resource so it is moved out of the data
lake to archives and even purged when
it is no longer needed for production
applications. If the retention of every
piece of NoSQL data depends on its
relevance to users, the platforms are less
likely to become unmanageable swamps.
Enterprise data professionals should apply
multitemperature storage management to
data maintained in NoSQL platforms just
as consistently as they do with structured,
system-of-record data kept in RDBMSs.
Doing so may require acquiring new
integrated life cycle management tools that
work with an enterprise’s NoSQL platforms.
It will also require clarifying which, if any,
NoSQL data domains are “ephemeral” (in
the sense that there may be no need to
retain the bulk of the data in permanent
systems of record or in data lakes).

Continued

https://tdwi.org

6 tdwi.org

3 MISTAKE THREE:
PUTTING AN UNSUPPORTED NOSQL OPEN-SOURCE DISTRIBUTION
INTO PRODUCTION

Most NoSQL platforms are available as open-
source distributions; most are also available
with commercial licenses that provide
enterprise-grade reliability and support as well
as subscription-based, on-demand offerings
from cloud providers.

Deploying a purely open-source NoSQL
distribution is problematic because although
it is “free” from licensing fees, the requisite
tools administrators need to configure, scale,
monitor, manage, and ensure high availability
of these platforms are primarily available
through commercial licenses. Putting an
unsupported NoSQL open-source distribution
into production is a one-way ticket to failure if
you have not factored ongoing support costs
and staffing requirements into your budget.

To avoid betting your business on an
unsupported NoSQL open-source platform, data
and IT professionals should follow these steps.

• Subscribe to a fully managed NoSQL cloud
service.

• Acquire NoSQL open-source support as
part of an enterprise software subscription
offering.

• Sign up for NoSQL open-source enterprise
licenses that include phone and email
contacts, guaranteed response times, 24/7
support, and guaranteed resolution times.

• Put your organization’s exact NoSQL
support requirements out for tender rather
than choose a packaged offering from a
company that supplies enterprise support.

• Certify your own data and IT technical
staff in the NoSQL platform and support it
in-house, exploiting free support resources
such as mailing lists, developer forums, live
support chat, and extensive documentation
libraries.

• Get support from a systems integrator or
IT consultant, if they are also responsible
for the part of your infrastructure running
open-source software.

https://tdwi.org

7 tdwi.org

4 MISTAKE FOUR:
APPLYING A NOSQL DATA MODEL UNSUITED TO A PARTICULAR APPLICATION

NoSQL’s versatile embrace of diverse data
models is also a data management mistake
waiting to happen.

Savvy professionals choose the right data
model for the application domain of interest.
For example, key-value stores are well suited
for keeping track of simultaneous web,
mobile, and other interactions that involve
thousands of users, such as in online gaming
and collaboration applications. They are well
suited for personalizing and optimizing user
experiences. However, they are not particularly
suited to storing and retrieving large,
unstructured data files, a use case for which
document databases are a better choice.

To avoid applying a NoSQL data model that
is not optimal—in other words, too slow,
inefficient, and complex for a particular
application—enterprise data professionals
should adopt a NoSQL platform that supports
multiple data models. Fortunately, multimodel
data platforms have become mainstream.
More NoSQL platforms are architected with
dedicated engines that support various
models—such as key-value, search, time-
series, and graph—rather than simply through
evolution of their APIs.

When the underlying engines are evolved to
support various models, the NoSQL platform
can achieve superior performance and low
latency when processing requests regardless
of which model an application speaks. This
approach enables each engine and its
associated data structures to be optimized
for various use cases. The engines can be
selectively loaded into memory according to
use case. All engines can access the same data,
eliminating the need to store multiple copies
of the same data or to incur the overhead
of transferring data between engines. This
approach also facilitates NoSQL processing in a
microservices environment so the engines can
efficiently communicate state, events, and data
with each other.

https://tdwi.org

8 tdwi.org

5 MISTAKE FIVE:
INTRODUCING NOSQL SILOS INTO ENTERPRISE DATA ARCHITECTURES

NoSQL databases are purpose-built and
optimized for various use cases. Chief among
these are real-time applications; edge, mobile,
and embedded applications; customer
experience optimization; content management;
caching; and archiving.

NoSQL platforms persist diverse data
types that are essential to these and other
applications. What they generally do not do
is manage the tabular “golden record” data
that is the heart of transactions and other
core business applications. Generally, NoSQL
applications are unsuited to such business
applications as online transaction processing,
online analytical processing, data warehousing,
and structured data analysis.

To avoid the mistake of deploying purpose-
built NoSQL platforms as silos within enterprise
data architectures, IT professionals should:

• Adopt a multimodel NoSQL platform
that supports a wide range of use
cases. Enterprise data professionals
should explore the growing range of
multimodel data platforms that converge
the data engines associated with previously
distinct NoSQL segments (key-value
store, document, wide-column, graph),
relational, file, object, and other data
platforms. Chief among these emerging

segments are lakehouse platforms that
converge relational and NoSQL to support
unification of data warehousing and data
lake workloads; multimodel platforms that
converge relational, document, graph,
key-value store, and even hyperledger/
blockchain; and NewSQL databases that
converge NoSQL with relational/ACID.

• Integrate NoSQL platforms as purpose-
built zones within multiplatform data
architecture. Enterprise IT professionals
should incorporate their NoSQL silos into
an enterprise data architecture alongside
relational, file-based, and other databases.
This involves implementing a common data
catalog, data engineering pipeline, data
governance backbone, data virtualization
middleware, and other platform capabilities
as unifying service layers. Bridging NoSQL
and other data silos among on-premises
and public clouds often involves deploying
hybrid and multicloud integration fabrics.

• Migrate NoSQL instances to fully
managed public clouds. Subscription-
based NoSQL database-as-a-service
offerings are gaining traction. Public cloud

Continues

https://tdwi.org

9 tdwi.org

providers offer SaaS-based access to their
own NoSQL and other databases, as well
as hosted instances of many of the leading
NoSQL enterprise products.

One silo-busting strategy is for enterprises
to migrate NoSQL data and workloads to
these cloud-based environments, relying
on cloud providers to bridge them with
other databases (on-premises and public
cloud) through their own on-demand data
integration, governance, and other services.
Alternatively, enterprises should consider
migrating their on-premises NoSQL silos
to the multimodel, on-demand databases
offered by more cloud providers, many of
which offer multimaster global replication
(which allows data to be stored by a group
of computers and updated by any member
of the group).

Continued

https://tdwi.org

10 tdwi.org

NoSQL platforms boast their ability to
horizontally scale data. However, given the
variety of NoSQL architectures on the market,
it is prudent to assume they do not all have the
same scalability profiles.

Scaling of NoSQL databases, as with any
software, is constrained by the capacity of the
compute, memory, storage, bandwidth, and
other hardware resources. It’s also constrained
by the architecture of the software itself,
especially by its ability to distribute, parallelize,
and dynamically provision resources to the
various functional components of the database
software stack.

To avoid inadvertently hitting one’s head on
the scalability constraints of a NoSQL database
platform, IT professionals should:

• Perform NoSQL database benchmarking.
Consider the scaling and performance
constraints of various NoSQL platforms.
Benchmarking a NoSQL platform requires
identifying the specific NoSQL software
distribution, its deployment platform
and configuration, the use cases to be
supported, the expected normal and peak
workloads, and the performance metrics
(e.g., throughput, latency, query response
times, concurrent writes and reads, join
performance) to be measured. Also

factor into the benchmark the extent to
which the platforms being evaluated use
such performance-impacting features as
indexing, ACID transactions, object-level
caching, asynchronous replication, data
persistence, and dynamic auto-scaling of
resources depending on workload. Given
the fact that every one of those factors is
a variable, enterprise IT professionals will
need to either benchmark the alternatives
themselves or rely on credible third-party
benchmarks when assessing whether
a given NoSQL platform deployment
can scale sufficiently for their intended
purposes.

• Consider how a NoSQL platform trades
off scalability against other database
operational metrics. When assessing
the scaling limits of any NoSQL database,
IT professionals should keep the CAP
Theorem uppermost in mind. The acronym
refers to three core database engineering
operational metrics: consistency, availability,
and partition tolerance. The theorem states
that one can only guarantee at most two
but not all three of these metrics in any

MISTAKE SIX:
FAILING TO RECOGNIZE THE SCALABILITY CONSTRAINTS OF A PARTICULAR
NOSQL PLATFORM6

Continues

https://tdwi.org

11 tdwi.org

deployment of a database. Considering
that scaling a NoSQL database depends
on horizontal partitioning of data sets,
its operational integrity must always be
engineered for partition tolerance, which
guarantees that the partitioned database
continues to operate despite arbitrary
message loss or failure of part of the
system. Consequently, the process of
horizontally scaling a NoSQL database
across separate servers or other nodes
must always introduce a corresponding
hit to the consistency of database writes
(i.e., the guarantee that all database nodes
see the same updates at the same time),
the availability of database nodes (i.e., the
guarantee that every database request
receives a response about whether it was
successful or failed), or both.

• Assess the scalability impacts of
different NoSQL replication, sharding,
and consistency schemes. As previously
mentioned, NoSQL databases scale
horizontally by distributing data sets
across multiple nodes, servers, and
clusters. This involves—at the very least—
robust replication of partitioned database
instances to multiple nodes. When
benchmarking the scalability of different
NoSQL platforms, it’s important to consider

the number of nodes, the replication
and partitioning schemes employed, the
manner in which applications access and
manipulate data in the partitions, and
the level of consistency (strong, strongly
eventual, or eventual) guaranteed on
distributed database writes. It also depends
on whether and how the NoSQL platform
employs sharding, which splits large,
partitionable tables across the servers,
thereby enabling database distribution over
a large number of machines for improved
performance.

Continued

https://tdwi.org

12 tdwi.org

NoSQL platforms are often built to ingest,
load, and persist a huge volume and variety
of data types. Consequently, the configuration
of NoSQL clusters may overprovision storage
capacity while skimping on the compute,
memory, and bandwidth resources necessary
to support acceptable performance on
downstream access, query, and analysis of the
stored data.

Within a multiplatform data engineering
pipeline, NoSQL platforms may have
insufficient resources to handle ETL workloads
on the volume of data being ingested or to
handle batch and real-time workloads. These
resource imbalances can introduce bottlenecks
that impede delivery of aggregated,
conformed, cleansed data to data warehouses,
analytics applications, and other consumers.

To avoid creating resource imbalances in their
NoSQL deployments, enterprises should adopt
database platforms that do the following:

• Support elastic scaling of compute, storage,
memory, and bandwidth resources as
data workloads and requirements change
so bottlenecks can be avoided through
on-demand resource provisioning.

• Provide the flexibility to run batch and
real-time workloads anywhere—including
on premises, in one or more public clouds,
or in a hybrid public/private cloud—so
jobs can be moved away from potential
bottlenecks to nodes with the requisite
availability, performance, and scale.

• Leverage data replication with sharding,
thereby enabling geographic distribution,
horizontal scaling, high availability,
disaster recovery, and load balancing
across multiple, separate database server
instances so no instance can become a
bottleneck or single point of failure.

7 MISTAKE SEVEN:
INTRODUCING POTENTIAL NOSQL BOTTLENECKS INTO DATA-PROCESSING
PIPELINES

https://tdwi.org

13 tdwi.org

8 MISTAKE EIGHT:
CONFIGURING RESOURCE IMBALANCES INTO NOSQL DATABASE CLUSTERS
AND SERVERS

NoSQL’s powerful processing comes from
being deployed on scale-out clusters and
relying on sharding to horizontally partition
large data sets out to diverse servers and
geographies.

As NoSQL clusters are scaled out over the
years, the individual servers added to these
clusters may vary widely in specifications,
capacity, and capabilities. This may result in
resource imbalances if, for example, NoSQL
clusters are processing compute-bound
workloads on older nodes that have single-
core CPUs while multicore CPUs on newer
nodes sit idle. Likewise, NoSQL clusters that
mix nodes of various specifications may not
process I/O-bound workloads efficiently if they
are executed on older nodes with rotating
disk rather than being sent to newer nodes
configured with solid-state drives.

To avoid configuring resource imbalances
into NoSQL database clusters and nodes,
enterprises should adopt platforms that:

• Scale to thousands of database instances in
support of high-volume concurrency across
disparate workloads

• Provide on-demand scaling of compute,
storage, memory, and bandwidth resources
within and between every database cluster
and node

• Automatically rebalance and re-shard data
workloads horizontally across clusters and
nodes to guarantee high-throughput, low-
latency, real-time performance

• Leverage sharding so database operations
can tap into the full computational power
of multicore processing platforms

• Offer dynamic workload management to
support traffic peaks without the need to
scale database infrastructure

• Use multitenancy to allow multiple
database endpoints to run in a
single cluster, thereby maximizing
infrastructure utilization, enabling
endpoint-level database optimization,
avoiding performance degradation, and
safeguarding database security

• Use intelligent storage tiering so that
frequently used “hot” data stays in memory
while less-frequently used “cold” data goes
on flash, SSD, rotating storage, or tape,
with the system automatically balancing
and otherwise managing where data is
physically persisted

Continues

https://tdwi.org

14 tdwi.org

• Run test, development, and production
databases on separate tenants, nodes,
or clusters, providing workload isolation
and enabling separate provisioning,
management, and optimization to meet
their various scaling, performance, and
availability requirements

Continued

https://tdwi.org

15 tdwi.org

NoSQL platforms persist data that may need
to be governed for quality, compliance, or
other reasons.

Enterprises’ NoSQL platforms are ingesting a
dizzying range of new data types from mobile
devices, edge applications, intelligent robots,
and other endpoints connected to the cloud.
As NoSQL platforms ingest a wider range of
structured, semistructured, and unstructured
data that is then delivered into enterprise
applications, the legal, regulatory, and other
governance-related risks grow.

NoSQL databases’ broad adoption is also a
potential risk factor. Enterprises’ shift toward
self-service business analytics has heightened
the risk that NoSQL-persisted data may fall
into the wrong hands or, even when accessed
by authorized users, may be employed
for inappropriate ends and be exposed
to misuse by unauthorized third parties.
Likewise, the advent of citizen data scientists
leveraging NoSQL platforms as shared data
lakes has increased the risk that users will
assemble rogue data sets that are inaccurate,
inconsistent, and entirely outside the oversight
of enterprise IT professionals.

To avoid creating data governance issues when
deploying NoSQL for these and other use
cases, organizations should:

• Update their data governance and curation
practices to ensure that new unstructured,
semistructured, and other data persisted in
NoSQL platforms is kept correct, current,
conformed, and compliant

• Migrate legacy data governance
infrastructure so it integrates tightly with
the NoSQL platforms to which enterprises
have migrated core business data

• Deploy cloud-based data governance
infrastructure that includes scalable
data cataloging, data lineage, metadata
management, master data management,
and data quality management tooling

• Leverage cloud-native platforms to
orchestrate data governance workflows
across disparate source systems, processing
pipelines, stewardship tasks, and
production applications

• Automate the discovery, matching, merging,
and correction of disparate customer,
product, and other data sets persisted in
NoSQL platforms

MISTAKE NINE:
USING A NOSQL PLATFORM FOR MISSION-CRITICAL APPLICATIONS WITHOUT
PROVISIONING STRONG DATA GOVERNANCE9

Continues

https://tdwi.org

16 tdwi.org

• Set access and permission controls on
which NoSQL data sets may be used
by data scientists when building and
training their machine learning models or
by developers when building their own
applications

Until enterprises fully migrate their data
governance investments to the cloud, they
risk introducing inaccuracies, inconsistencies,
and noncompliant changes across data assets
scattered across silos associated with various
data stores. Just as important, they risk hitting
their heads on the scaling of data governance
workloads until they move these investments
to NoSQL platforms that enable flexible scaling
of compute and storage resources as those
requirements grow.

Continued

https://tdwi.org

17 tdwi.org

10 MISTAKE TEN:
MAKING NOSQL A PILLAR OF ENTERPRISE DATA ARCHITECTURE WITHOUT FIRST
TRAINING IT AND DATA MANAGEMENT STAFF

NoSQL platforms may be unfamiliar to most
of the people who deploy, manage, and build
relational database applications.

It’s a big mistake to introduce any NoSQL
platform into an IT or data management
organization without first upgrading the skills
of existing staff and recruiting people with the
right mix of competencies. Likewise, it would
be a blunder to accept someone’s claim to be
an expert in NoSQL when, in fact, NoSQL is a
vague term that applies to such disparate data
platform architectures as document, key-value,
wide-column, and graph databases.

To avoid the mistake of rolling out NoSQL
platforms in advance of upgrading technical
staff expertise, organizations should:

• Explore both commercial and free online
courses that can familiarize your data
staff with NoSQL concepts, architectures,
practices, platforms, and solutions

• Immerse technical staff in the fundamentals
of NoSQL databases, starting with the
fact that they are nonrelational database
management systems that support flexible
schemas, provide eventual consistency, and
use sharding for horizontal scalability

• Train data architects to recognize both the
advantages and limitations—in scalability,

performance, concurrency, availability,
transactionality, security, optimization, and
fault tolerance—of various NoSQL data
architectures

• Certify staff in both the designated NoSQL
data architectures (i.e., document, wide-
column, key-value, graph) to be deployed
and the specific commercial or open-source
NoSQL platform to be adopted

• Leverage open-source communities that
use NoSQL databases to augment the
talent in your organization

https://tdwi.org

18 tdwi.org

SUMMARY

NoSQL platforms are a fundamental
component of enterprise data infrastructures.
Given the business stakes of succeeding with
NoSQL platforms, and the risks of failing to
use best practices, enterprise IT and data
professionals should heed the guidance TDWI
has presented in this report.

The chief takeaways for enterprise data
professionals presented here include:

• Keep NoSQL deployments aligned with
business imperatives

• Apply NoSQL platforms to use cases for
which they are best suited

• Only put supported NoSQL open-source
distributions into production that have
enterprise-grade features such as scalability
and high availability

• Apply NoSQL data models that are best
suited to a particular application

• Make sure that NoSQL platforms are
fully integrated into enterprise data
architectures

• Recognize the scalability constraints of
each NoSQL platform

• Remove potential NoSQL bottlenecks in
data-processing pipelines

• Provision balanced NoSQL database
clusters and servers

• Implement strong data governance in
NoSQL platforms

• Upgrade IT and data management staff’s
expertise in NoSQL

Finally, although many NoSQL data platforms
are purpose-built, many are well suited to a
wide range of use cases and should not be
excluded from consideration without evaluating
their full merits. For example, key-value stores—
an important NoSQL platform architecture—are
suitable for requirements such as these:

• Interactivity is a sweet spot for key-value
store databases, which are optimal for any
use case for which reducing interactive
response times or closed-loop process
latencies is the key to boosting customer
experience and business outcomes, such as
retail mobile applications.

• Latency is another advantage of key-value
store databases, which are optimized for
cloud-to-edge use cases that require real-
time caching, robust replication, message

Continues

https://tdwi.org

19 tdwi.org

brokering, and customizable on-disk
persistence. They use simple operational
commands such as GET, PUT, and DELETE,
which makes them efficient at processing
constant streams of read/write operations
when path requests used are short and direct.

• Scalability enables key-value stores to
process a constant stream of read/write
operations. They scale up by maintaining
the database in memory; scale out through
partitions, sharding, and replication; and
minimize the scaling constraints of ACID
guarantees by avoiding locks, latches, and
low-overhead server calls.

• Heterogeneity is intrinsic to key-value
store databases, many of which support
multimodel data sets and process
heterogeneous data as associative arrays
in which an arbitrary string (such as a hash
or filename) represents each key and the
values can be any data that can be stored
as a binary large object.

• Temporality is built into a key-value store
through its ability to store time-stamped
data as a hash table or dictionary.

• Contextualization is within the
wheelhouse of key-value store databases,
which treat graph data and rich metadata
as a single opaque collection and which
may have different fields for every record.

Continued

https://tdwi.org

20 tdwi.org

ABOUT THE AUTHOR

ABOUT REDIS

James Kobielus is senior director of research for data management at TDWI. He
is a veteran industry analyst, consultant, author, speaker, and blogger in analytics
and data management. He focuses on advanced analytics, artificial intelligence,
and cloud computing. Kobielus has held positions at Futurum Research,
SiliconANGLE Wikibon, Forrester Research, Current Analysis, and the Burton
Group, and also served as senior program director, product marketing for big data
analytics, for IBM, where he was both a subject matter expert and a strategist on
thought leadership and content marketing programs targeted at the data science

community. You can reach him by email (jkobielus@tdwi.org) on Twitter (@jameskobielus) and on
LinkedIn (https://www.linkedin.com/in/jameskobielus/).

Businesses are more digital today than ever before. They need to build, deploy, and run real-time
services in order to stay ahead of the curve. The notion of real time is not just a nice-to-have
feature anymore. It’s an expectation. It is what sets a merely good user experience apart from a
great one. A real-time data layer is a critical enabler in creating those real-time experiences.

Redis makes apps faster by creating a data layer for a real-time world. We are the driving force
behind Open-Source Redis, a popular in-memory database, and commercial provider of Redis
Enterprise, a real-time data platform.

Redis Enterprise powers real-time services for over 8,000 organizations globally. It builds upon
the simplicity and speed of Open-Source Redis along with an enterprise-grade data platform that
offers robustness of modern data models, management, automation, performance, and resiliency
to deploy and run modern applications at any scale from anywhere on the planet.

https://tdwi.org
mailto:jkobielus@tdwi.org
https://twitter.com/JamesKobielus
https://www.linkedin.com/in/jameskobielus/
https://redis.io

TDWI is your source for in-depth education and research on all things data. For 20
years, TDWI has been helping data professionals get smarter so the companies they
work for can innovate and grow faster. TDWI provides individuals and teams with a
comprehensive portfolio of business and technical education and research to acquire
the knowledge and skills they need, when and where they need them. The in-depth,
best-practices-based information TDWI offers can be quickly applied to develop
world-class talent across your organization’s business and IT functions to enhance
analytical, data-driven decision making and performance. TDWI advances the art and
science of realizing business value from data by providing an objective forum where
industry experts, solution providers, and practitioners can explore and enhance data
competencies, practices, and technologies. TDWI offers major conferences, topical
seminars, onsite education, a worldwide membership program, business intelligence
certification, live webinars, resourceful publications, industry news, an in-depth
research program, and a comprehensive website: tdwi.org.

ABOUT TDWI

A Division of 1105 Media

6300 Canoga Avenue, Suite 1150

Woodland Hills, CA 91367

E info@tdwi.org

	FOREWORD
	MISTAKE ONE: APPLYING NOSQL PLATFORMS TO USE CASES FOR WHICH OTHER DATA PLATFORMS ARE BETTER SUITED
	MISTAKE TWO: IMPLEMENTING A NOSQL PLATFORM WITHOUT THE FORESIGHT TO KEEP IT FROM DEGENERATING INTO A DATA SWAMP
	MISTAKE THREE: PUTTING AN UNSUPPORTED NOSQL OPEN-SOURCE DISTRIBUTION INTO PRODUCTION
	MISTAKE FOUR: APPLYING A NOSQL DATA MODEL UNSUITED TO A PARTICULAR APPLICATION
	MISTAKE FIVE: INTRODUCING NOSQL SILOS INTO ENTERPRISE DATA ARCHITECTURES
	MISTAKE SIX: FAILING TO RECOGNIZE THE SCALABILITY CONSTRAINTS OF A PARTICULAR NOSQL PLATFORM
	MISTAKE SEVEN: INTRODUCING POTENTIAL NOSQL BOTTLENECKS INTO DATA-PROCESSING PIPELINES
	MISTAKE EIGHT: CONFIGURING RESOURCE IMBALANCES INTO NOSQL DATABASE CLUSTERS AND SERVERS
	MISTAKE TEN: MAKING NOSQL A PILLAR OF ENTERPRISE DATA ARCHITECTURE WITHOUT FIRST TRAINING IT AND DATA MANAGEMENT STAFF
	SUMMARY
	ABOUT THE AUTHOR
	ABOUT REDIS

