
WHITE PAPER

Redis for Fast Data Ingest
Roshan Kumar, Senior Product Marketing Manager, Redis

CONTENTS

Abstract� 2

Background� 2

Challenges in Designing Fast Data Ingest Solutions� 2

Handling Fast Data Ingest in Redis� 2

Redis at the Speed of Twitter� 3

Sample Solutions� 3

Ingest with Redis Pub/Sub� 4

Ingest with Lists � 8

Ingest using Sorted Sets � 11

Tips for Performance Improvement and Scaling � 17

Conclusion � 17

2

Abstract
Real-time streaming data ingest is a common requirement for many big data use cases. This whitepaper outlines how the
in-memory database platform, Redis Enterprise, can solve common challenges associated with ingestion and processing
of large volumes of high velocity data. Redis, because of its high performance, is a popular choice for such fast data ingest
scenarios. This database achieves throughput of millions of operations/second with sub-millisecond latencies using minimal
resources and offers simple implementations, enabled by its multiple data structures and functions.

Background
Collecting, storing and processing streaming data in large volume and velocity is a task that presents architectural chal-
lenges – especially in fields like IoT, e-commerce, security, communications, entertainment, finance, and retail. And since
responsive, timely and accurate data-driven decision making is core to these businesses, real-time data collection and
analysis are critical.

An important first step in delivering real-time data analysis is ensuring adequate resources are available to effectively cap-
ture fast data streams. While the physical infrastructure (including a high-speed network, computation, storage and mem-
ory) plays an important role here, a company’s software stack must match the performance of its physical layer. Otherwise,
businesses can face a massive backlog of data, missing data or incomplete, misleading data.

Challenges in Designing Fast Data Ingest Solutions
High-speed data ingestion often involves several different types of complexity:

1.	 Large volumes of data sometimes arriving in bursts: Bursty data requires a solution that is capable of processing large
volumes of data with minimal latency. Ideally, it should be able to perform millions of writes per second with sub-milli-
second latency, using minimal resources.

2.	 Data from multiple sources/formats: Data ingest solutions must also be flexible enough to handle data in many different
formats, retaining source identity if needed and transforming or normalizing in real-time.

3.	 Data that needs to be filtered, analyzed or forwarded: Most data ingest solutions have one or more subscribers who
consume the data. These are often different applications that function in the same or different locations with a varied set
of assumptions. In such cases, the database not only needs to transform the data, but also filter or aggregate depending
on the requirements of the consuming applications.

4.	 Data coming from geographically distributed sources: In this scenario, it is often convenient for the underlying architec-
ture to distribute data collection nodes close to the source. The nodes themselves become part of the fast data ingest
solution, to collect, process, forward or reroute ingest data.

Handling Fast Data Ingest in Redis
Many solutions supporting fast data ingest today are complex, feature-rich and over-engineered for simple requirements.
Redis, on the other hand, is extremely light-weight, super-fast and easy-to-use. With clients available in over 60 languages,
Redis can be easily integrated with all popular software stacks.

Redis offers data structures such as Lists, Sets, Sorted Sets and Hashes that offer simple and versatile data processing. Redis
delivers over a million read/write operations per second, with sub-millisecond latency on a modest-sized commodity cloud
instance, making it the most resource-efficient for large volumes of data. It also supports messaging services and client
libraries in all popular programming languages, making it best suited for combining high-speed data ingest and real-time
analytics. Redis Pub/Sub commands make it a message broker between publishers and subscribers, a feature often used to
notify or carry messages between distributed data ingest nodes.

Redis Enterprise enhances Redis with seamless scaling, always-on availability, automated deployment and the ability to use
cost-effective Flash memory as a RAM extender so that large dataset processing can be accomplished cost-effectively.

The below sections outline how to use Redis Enterprise to address common data ingest challenges.

3

Redis at the Speed of Twitter
To illustrate the simplicity of Redis, we’ll explore a sample fast data ingest solution that gathers messages from a Twitter
feed. The goal of this solution is to process tweets in real-time and push them down the pipe as they are processed.

Twitter data ingested by the solution is then consumed by multiple processors down the line. As shown in Figure 1, this
example deals with two processors – 1. English Tweet Processor, and 2. Influencer Processor. Each processor filters the
tweets and passes them down its respective channels to other consumers. This chain can go as far as the solution requires.
However, in our example, we stop at the third level, where we aggregate popular discussions among English speakers and
top influencers.

Figure 1. Flow of the Twitter stream

Note that:

•	 We are using the example of processing Twitter feeds because of the velocity of data arrival and simplicity.

•	 Twitter data reaches our fast data ingest via a single channel. In many cases, such as IoT, there could be multiple data
sources sending data to the main receiver.

Sample Solutions
Here are three possible ways to implement this solution using Redis:

1.	 Ingest with Redis Pub/Sub

2.	 Ingest with List data structure

3.	 Ingest with Sorted Set data structure

4

Ingest with Redis Pub/Sub
This is the simplest implementation of fast data ingest. This solution uses Redis’ Pub/Sub feature, which allows applications
to publish and subscribe to messages. As shown in Figure 2, each stage processes the data and publishes it to a channel.
The subsequent stage subscribes to the channel and receives the messages for further processing or filtering.

Figure 2. Data ingest using Redis Pub/Sub

Pros

4.	 Easy to implement

5.	 Works well when the data sources and processors are distributed geographically.

Cons

1.	 The solution requires the publishers and subscribers to be up all the time. Subscribers lose data when stopped, or when
the connection is lost.

2.	 It requires more connections. A program cannot publish and subscribe to the same connection, so each intermediate
data processor requires two connections – one to subscribe and one to publish. If running Redis on a DBaaS platform, it
is important to verify whether your package or level of service has any limits to the number of connections.

A note about connections

If more than one client subscribes to a channel, Redis pushes the data to each client linearly one after the other.
Large data payloads and many connections may introduce latency between a publisher and its subscribers. Though
the default hard limit for maximum number of connections is 10,000, you must test and benchmark how many
connections are appropriate for your payload.

Client output buffer limits: Redis maintains a client output buffer for each client. The default limits for the client output
buffer for Pub/Sub are set as:

client-output-buffer-limit pubsub 32mb 8mb 60

With this setting, Redis will force clients to disconnect under two situations:

1.	 If the output buffer grows beyond 32mb

2.	 If the output buffer holds 8mb of data consistently for 60 seconds

This typically occurs when clients consume the data slower than it is published. Should such a situation arise, first try
optimizing the consumers such that they do not add latency while consuming the data. If you notice that your clients
are still getting disconnected, then you may increase the limits for the “client-output-buffer-limit pubsub” property in
redis.conf. Please keep in mind that any changes to the settings may increase latency between the publisher and sub-
scriber. Any changes must be tested and verified thoroughly.

5

Code Design

Figure 3. Class diagram of Fast Data Ingest Solution with Pub/Sub

This is the simplest of the three solutions described in this paper. Here are the important Java classes implemented for this
solution. Download the source code with full implementation here: https://github.com/redisdemo/IngestPubSub.

1.	 Subscriber class is the core class of this design. Every Subscriber object maintains a new connection with Redis.

class Subscriber extends JedisPubSub implements Runnable{

	 private String name = "Subscriber";

	 private RedisConnection conn = null;

	 private Jedis jedis = null;

	

	 private String subscriberChannel = "defaultchannel";

	 public Subscriber(String subscriberName, String channelName) throws Exception{ 	

		 name = subscriberName;

		 subscriberChannel = channelName;

		 Thread t = new Thread(this);

		 t.start();

	 }

	

	 @Override

	 public void run(){

		 try{

			 conn = RedisConnection.getRedisConnection();

			 jedis = conn.getJedis();

			 while(true){

				 jedis.subscribe(this, this.subscriberChannel);

			 }

		 }catch(Exception e){

			 e.printStackTrace();

		 }

	 }

https://github.com/redislabsdemo/IngestPubSub

6

	 @Override

	 public void onMessage(String channel, String message){

		 super.onMessage(channel, message);

	 }

}

2.	 Publisher class maintains a separate connection to Redis for publishing messages to a channel.

public class Publisher{

	

	 RedisConnection conn = null;

	 Jedis jedis = null;

	

	 private String channel = "defaultchannel";

	

	 public Publisher(String channelName) throws Exception{

		 channel = channelName;

		 conn = RedisConnection.getRedisConnection();

		 jedis = conn.getJedis();

	 }

	 public void publish(String msg) throws Exception{

		 jedis.publish(channel, msg);

	 }

}

3.	 Filters (EnglishTweetFilter, InfluencerTweetFilter, HashTagCollector, InfluencerCollector) extend Subscriber, which en-
ables them to listen to the inbound channels. Since you need separate Redis connections for subscribe and publish, each
filter class has its own RedisConnection Object. Filters listen to the new messages in their channels in a loop. Here’s the
sample code of EnglishTweetFilter class:

public class EnglishTweetFilter extends Subscriber

{

	 private RedisConnection conn = null;

	 private Jedis jedis = null;

	 private String publisherChannel = null;

	 public EnglishTweetFilter(String name, String subscriberChannel,

		 String publisherChannel) throws Exception{

			 super(name, subscriberChannel);

			 this.publisherChannel = publisherChannel;

			 conn = RedisConnection.getRedisConnection();

			 jedis = conn.getJedis();

		 }

		 @Override

7

		 public void onMessage(String subscriberChannel, String message){

			 JsonParser jsonParser = new JsonParser();

		

			 JsonElement jsonElement = jsonParser.parse(message);

			 JsonObject jsonObject = jsonElement.getAsJsonObject();

		

			 //filter messages: publish only English tweets

			 if(jsonObject.get("lang") != null &&

				 jsonObject.get("lang").getAsString().equals("en")){

				 jedis.publish(publisherChannel, message);

			 }

		 }

	 }

4.	 Publisher: This class has a publish method that publishes message to the required channel.

public class Publisher{

.

.

	 public void publish(String msg) throws Exception{

		 jedis.publish(channel, msg);

	 }

.

}

5.	 Main class: The main class reads data from the ingest stream and posts it to the “AllData” channel. The main method of
this class starts all of the filter objects.

public class IngestPubSub

{

.

	 public void start() throws Exception{

	 .

	 .

		 publisher = new Publisher("AllData");

		 englishFilter = new EnglishTweetFilter("English Filter","AllData",

		 "EnglishTweets");

		 influencerFilter = new InfluencerTweetFilter("Influencer Filter","All-

Data", 			 "InfluencerTweets");

		 hashtagCollector = new HashTagCollector("Hashtag Collector",

		 "EnglishTweets");

		 influencerCollector = new InfluencerCollector("Influencer Collector",

		 "InfluencerTweets");

	 .

	 .

}

8

Ingest with Lists
The List data structure in Redis makes implementing a queueing solution easy and straightforward. In this solution, the
producer pushes every message to the back of the queue, and the subscriber polls the queue and pulls new messages from
the other end.

Figure 4. Fast data ingest with Redis Lists

Pros

1.	 This method is reliable in cases of connection loss. Once data is pushed into the lists, it is preserved there until the sub-
scribers read it. This is true even if the subscribers are stopped or lose connection with the Redis server.

2.	 Producers and consumers require no connection between them.

Cons

1.	 Once data is pulled from the list, it is removed and cannot be retrieved again. Unless the consumers persist the data, it is
lost as soon as it is consumed.

2.	 Every consumer requires a separate queue, which requires storing multiple copies of the data.

Code Design

Figure 5. Class diagram of Fast Data Ingest Solution with Lists

Download the source code here: https://github.com/redisdemo/IngestList. This solution’s main classes are
explained below:

https://github.com/redislabsdemo/IngestList

9

1.	 MessageList embeds the Redis List data structure. The push() method pushes the new message to the left of the queue,
and pop() waits for a new message from the right if the queue is empty.

public class MessageList{

	 protected String name = “MyList”; // Name

.

.

	 public void push(String msg) throws Exception{

		 jedis.lpush(name, msg); // Left Push

	 }

	 public String pop() throws Exception{

		 return jedis.brpop(0, name).toString();

	 }

.

.

}

2.	 MessageListener is an abstract class that implements listener and publisher logic. A MessageListener object listens to
only one list, but can publish to multiple channels (MessageFilter objects). This solution requires a separate MessageFil-
ter object for each subscriber down the pipe.

class MessageListener implements Runnable{

	 private String name = null;

	 private MessageList inboundList = null;

	 Map<String, MessageFilter> outBoundMsgFilters =

					 new HashMap<String, MessageFilter>();

.

.

	 public void registerOutBoundMessageList(MessageFilter msgFilter){

		 if(msgFilter != null){

			 if(outBoundMsgFilters.get(msgFilter.name) == null){

				 outBoundMsgFilters.put(msgFilter.name, msgFilter);

			 }

		 }

	 }

.

.

	 @Override

	 public void run(){

.

		 while(true){

			 String msg = inboundList.pop();

			 processMessage(msg);

		 }

.

	 }

.

	 protected void pushMessage(String msg) throws Exception{

		 Set<String> outBoundMsgNames = outBoundMsgFilters.keySet();

10

		 for(String name : outBoundMsgNames){

			 MessageFilter msgList = outBoundMsgFilters.get(name);

			 msgList.filterAndPush(msg);

		 }

	 }

}

3.	 MessageFilter is a parent class facilitating the filterAndPush() method. As data flows through the ingest system, it is of-
ten filtered or transformed before being sent to the next stage. Classes that extend the MessageFilter class override the
filterAndPush method, and implement their own logic to push the filtered message to the next list.

public class MessageFilter{

	 MessageList messageList = null;

.

.

	 public void filterAndPush(String msg) throws Exception{

		 messageList.push(msg);

	 }

.

.

}

4.	 AllTweetsListener is a sample implementation of a MessageListener class. This listens to all tweets on the “AllData” chan-
nel, and publishes the data to “EnglishTweetsFilter” and “InfluencerFilter”

public class AllTweetsListener extends MessageListener{

.

.

	 public static void main(String[] args) throws Exception{

		 MessageListener allTweetsProcessor = AllTweetsListener.getInstance();

		 allTweetsProcessor.registerOutBoundMessageList(

		 new EnglishTweetsFilter("EnglishTweetsFilter", "EnglishTweets"));

		

		 allTweetsProcessor.registerOutBoundMessageList(

		 new InfluencerFilter("InfluencerFilter", "Influencers"));

		

		 allTweetsProcessor.start();

	 }

.

.

}

5.	 EnglishTweetsFilter extends MessageFilter. This class implements logic to select only those tweets that are marked as
English tweets. The filter discards non-English tweets and pushes English tweets to the next list.

public class EnglishTweetsFilter extends MessageFilter{

	

	 public EnglishTweetsFilter(String name, String listName) throws Exception{

		 super(name, listName);

	 }

11

	 @Override

	 public void filterAndPush(String message) throws Exception{

		 JsonParser jsonParser = new JsonParser();

		 JsonElement jsonElement = jsonParser.parse(message);

		 JsonArray jsonArray = jsonElement.getAsJsonArray();

		 JsonObject jsonObject = jsonArray.get(1).getAsJsonObject();

		 if(jsonObject.get("lang") != null &&

			 jsonObject.get("lang").getAsString().equals("en")){

				 Jedis jedis = super.getJedisInstance();

				 if(jedis != null){

					 jedis.lpush(super.name, jsonObject.toString());

				 }

		 }

	 }

}

Ingest using Sorted Sets
One of the concerns with the Pub/Sub method is that it can be unreliable because it is susceptible to connection loss.
The challenge with the List-based solution is the problem of data duplication and tight coupling between producers and
consumers. However, with Sorted Sets, both of these issues are addressed. A counter tracks the number of messages, and
the messages are indexed against this message count. They are stored in a non-ephemeral state inside the Sorted Sets data
structure, which is polled by consumer applications. The consumers check for new data and pull messages by running the
ZRANGEBYSCORE command.

Figure 6. Fast data ingest with Sorted Sets and Pub/Sub

Unlike the previous two solutions, this one allows subscribers to retrieve historical data when needed, and consume it more
than once. Only one copy of data is stored at each stage, making it ideal for situations where the consumer to producer ra-
tio is very high. However, this approach is more complex and less cost effective when compared with the last two solutions

Pros

1.	 It can fetch historical data when needed, because retrieved data is not removed from the Sorted Set.

2.	 The solution is resilient to data connection losses, since producers and consumers require no connection between them.

3.	 Only one copy of data is stored at each stage, making it ideal for situations where the consumer to producer ratio is very
high.

12

Cons

1.	 Implementing the solution is more complex.

2.	 More storage space is required, as data is not deleted from the database when consumed.

Code Design

Figure 7. Class diagram of Fast Data Ingest Solution with Sorted Sets

Download the source code here: https://github.com/redisdemo/IngestSortedSet. The main classes are explained below:

1.	 SortedSetPublisher inserts a message into a Sorted Set and increments the counter that tracks new messages. In many
practical cases the counter can be replaced by the timestamp.

public class SortedSetPublisher

{

	 public static String SORTEDSET_COUNT_SUFFIX = "count";

	

	 // Redis connection

	 RedisConnection conn = null;

	 // Jedis object

	 Jedis jedis = null;

	

	 // name of the Sorted Set data structure

	 private String sortedSetName = null;

	 /*

	 * @param name: SortedSetPublisher constructor

	 */

	 public SortedSetPublisher(String name) throws Exception{

		 sortedSetName = name;

		 conn = RedisConnection.getRedisConnection();

		 jedis = conn.getJedis();

	 }

	 /*

	 */

https://github.com/redislabsdemo/IngestSortedSet

13

	 public void publish(String message) throws Exception{

		 // Get count

		 long count = jedis.incr(sortedSetName+":"+SORTEDSET_COUNT_SUFFIX);

		

		 // Insert into sorted set

		 jedis.zadd(sortedSetName, (double)count, message);

	 }

}

2.	 SortedSetFilter class is a parent class that implements logic to learn about new messages, pull them from the database,
filter them, and push them to the next level. Classes that implement custom filters extend this class and override the
processMessage() method with a custom implementation.

public class SortedSetFilter extends Thread

{

	 // RedisConnection to query the database

	 protected RedisConnection conn = null;

	 protected Jedis jedis = null;

	 protected String name = "SortedSetSubscriber"; // default name

	 protected String subscriberChannel = "defaultchannel"; //default name

	 // Name of the Sorted Set

	 protected String sortedSetName = null;

	 // Channel (sorted set) to publish

	 protected String publisherChannel = null;

	 // The key of the last message processed

	 protected String lastMsgKey = null;

	 // The key of the latest message count

	 protected String currentMsgKey = null;

	 // Count to store the last message processed

	 protected volatile String lastMsgCount = null;

	 // Time-series publisher for the next level

	 protected SortedSetPublisher SortedSetPublisher = null;

	 public static String LAST_MESSAGE_COUNT_SUFFIX="lastmessage";

	 /*

	 * @param name: name of the SortedSetFilter object

 	 * @param subscriberChannel: name of the channel to listen to the

	 * availability of new messages

14

	 * @param publisherChannel: name of the channel to publish the availability of 	

 	 * new messages

	 */

	 public SortedSetFilter(String name, String subscriberChannel,

 						 String publisherChannel) throws Exception{

		 this.name = name;

		 this.subscriberChannel = subscriberChannel;

		 this.sortedSetName = subscriberChannel;

		 this.publisherChannel = publisherChannel;

		 this.lastMsgKey = name+":"+LAST_MESSAGE_COUNT_SUFFIX;

		 this.currentMsgKey =

		 subscriberChannel+":"

		 +SortedSetPublisher.SORTEDSET_COUNT_SUFFIX;

	 }

	 @Override

	 public void run(){

		 try{

			 // Connection for reading/writing to sorted sets

			 conn = RedisConnection.getRedisConnection();

			 jedis = conn.getJedis();

			 if(publisherChannel != null){

				 sortedSetPublisher =

					 new SortedSetPublisher(publisherChannel);

			 }

			 // load delta data since last connection

			 while(true){

				 fetchData();

			 }

		 }catch(Exception e){

			 e.printStackTrace();

	 }

}

/*

 * init() method loads the count of the last message processed. It then loads

 * all messages since the last count.

 */

private void fetchData() throws Exception{

	 if(lastMsgCount == null){

		 lastMsgCount = jedis.get(lastMsgKey);

		 if(lastMsgCount == null){

			 lastMsgCount = "0";

		 }

	 }

15

	 String currentCount = jedis.get(currentMsgKey);

	 if(currentCount != null && Long.parseLong(currentCount) >

 				 Long.parseLong(lastMsgCount)){

		 loadSortedSet(lastMsgCount, currentCount);

	 }else{

		 Thread.sleep(1000); // sleep for a second if there's no

 				 // data to fetch

	 }

}

//Call to load the data from last Count to current Count

private void loadSortedSet(String lastMsgCount, String currentCount)

								 throws Exception{

	 //Read from SortedSet

	 Set<Tuple> CountTuple =

		 jedis.zrangeByScoreWithScores(

			 sortedSetName, lastMsgCount, currentCount);

	 for(Tuple t : CountTuple){

		 processMessageTuple(t);

	 }

}

// Override this method to customize the filters

private void processMessageTuple(Tuple t) throws Exception{

	 long score = new Double(t.getScore()).longValue();

	 String message = t.getElement();

	 lastMsgCount = (new Long(score)).toString();

	 processMessage(message);

	 jedis.set(lastMsgKey, lastMsgCount);

}

	 protected void processMessage(String message) throws Exception{

		 //Override this method

	 }

}

16

3.	 EnglishTweetsFilter is a custom filter that extends SortedSetFilter with its own custom filter to select only tweets that
are marked as English.

public class EnglishTweetsFilter extends SortedSetFilter

{

	 /*

	 * @param name: name of the SortedSetFilter object

	 * @param subscriberChannel: name of the channel to listen to the

	 * availability of new messages

	 * @param publisherChannel: name of the channel to publish the availability

	 * of new messages

	 */

	 public EnglishTweetsFilter(String name, String subscriberChannel,

				 String publisherChannel) throws Exception{

		 super(name, subscriberChannel, publisherChannel);

	 }

	 @Override

	 protected void processMessage(String message) throws Exception{

		 //Filter; add them to a new time series database and publish

		 JsonParser jsonParser = new JsonParser();

		 JsonElement jsonElement = jsonParser.parse(message);

		 JsonObject jsonObject = jsonElement.getAsJsonObject();

		 if(jsonObject.get("lang") != null &&

		 jsonObject.get("lang").getAsString().equals("en")){

			 System.out.println(jsonObject.get("text").getAsString());

			 if(sortedSetPublisher != null){

				 sortedSetPublisher.publish(jsonObject.toString());

			 }

		 }

	 }

	 /*

	 * Main method to start EnglishTweetsFilter

	 */

	 public static void main(String[] args) throws Exception{

		 EnglishTweetsFilter englishFilter =

			 new EnglishTweetsFilter(

				 "EnglishFilter", "alldata", "englishtweets");

		 englishFilter.start();

	 }

17

Tips for Performance Improvement and Scaling
4.	 Pipelining publish or push commands

A Redis command from a client to the server follows the request/response model of the TCP/IP protocol, which means
that the client waits for the server’s response for every command before proceeding to the next command. Pipelining
allows a client program to run multiple commands without waiting for the response. With this technique, a data ingest
solution can publish or push multiple messages at once to reduce the number of roundtrips between the client and the
server.

5.	 Polling versus asynchronous notification
The first two examples in this paper rely on asynchronous communication between the producers and the consumers.
However, depending on the data flow scenario (for example, cases involving a continuous flow of data), the consumers
may be designed to pull a new set of data as they complete the processing of their current set. For example, you could
replace a BRPOP call with multiple RPOP within a pipeline in the “Fast data ingest using Redis Lists” example.

6.	 Failover for Pub/Sub
Redis Enterprise delivers high availability for Pub/Sub. In the event the master goes down, a slave takes over the job
of being the message broker, thus preserving continuity to the service on the backend. However, the publishers and
subscribers will temporarily lose their connection with the server. Many popular Redis client libraries offer a feature to
automatically reconnect and reestablish connections.

7.	 Redis Enterprise Flash
Redis Enterprise Flash technology enhances Redis to run on a combination of RAM and more cost-effective Flash
memory. For large datasets, this is the most cost-optimal way to run Redis with the same sub-millisecond latencies and
extremely high throughput. This would be ideal for fast data ingest using Sorted Sets as a time-series database. Since
with this approach, the data isn’t removed from the Sorted Set when consumed, the size of a database can easily grow
into multiple gigabytes if not terabytes. With Redis Enterprise Flash, all of this data does not need to consume RAM, it
can be stored in a combination of RAM and Flash memory.

Conclusion
When using Redis for fast data ingest, its data structures and pub/sub functionality offer numerous options for implementa-
tion. Each one has its advantages– a summary of the related pros and cons is below. This table also outlines which method
is appropriate for which type of application:

Fast data ingest with Pros Cons Ideal scenarios

Pub/Sub •	 Easy to implement

•	 Producers and consumers
are decoupled

•	 Not resilient to connec-
tion loss

•	 Requires many connec-
tions

e-commerce workflows, job and
queue management, social media
communication, gaming, collection
of logs

Lists •	 Easy to implement

•	 Data is not lost when the
subscriber loses connec-
tion

•	 Tight coupling of pro-
ducers and consumers

•	 Data is duplicated for
each consumer, hence
not ideal for some
scenarios

financial transactions, gaming,
social media, IoT, fraud detection

Sorted Sets •	 Allows time-series queries
•	 Efficient for cases where

one client has numerous
consumer

•	 Consumes more space

•	 Complex to implement
and maintain

IoT transactions, financial transac-
tions, metering

700 E El Camino Real, Suite 250
Mountain View, CA 94040

(415) 930-9666
redis.com

Redis for Fast Data Ingest_082021

	Abstract
	Background
	Challenges in Designing Fast Data Ingest Solutions
	Handling Fast Data Ingest in Redis
	Redis at the Speed of Twitter
	Sample Solutions
	Ingest with Redis Pub/Sub
	Ingest with Lists
	Ingest using Sorted Sets

	Tips for Performance Improvement and Scaling
	Conclusion

