
© 2021 Redis

Build Better
Experiences and
a Stronger Community
with Smart
Matchmaking
Part 2 of a 4 Part Gaming Series

E-Book

22

Redis E-Book / Build Better Experiences and a Stronger Community with Smart Matchmaking © 2021 Redis

A strong community is essential for the longevity of
any multiplayer game. When the community grows,
players are engaged, monthly active users go up, and
the revenue increases. But if the community is actively
shrinking, then game creators need to change something
fast before the game declines into obscurity—or worse,
has the plug pulled.

Matchmaking is an essential part of building a strong, active
community. It doesn’t matter how good the gameplay
and game design is. If you spend all your time staring at
search screens while trying to find a game, waiting on
matchmaking algorithms, or playing against wrong players,
you never get to really experience the game.

Whether it’s building teams, putting together battle
royales, or bringing players together in social games,
matchmaking services need to run their algorithms
quickly and accurately. In fact, it should be so quick and
accurate that it’s a seamless experience for the players.
This combination is what makes smart matchmaking
stand out. Not only is it fast, but it makes matches based
on fresh data that perfectly fit the player.

Delivering smart matchmaking is easier said than done,
but with the right database, your algorithms can run
at real-time speeds to give your players a low-latency,
flawless matchmaking experience that keeps them
coming back to play again and again.

What does real-time mean?
Research into human response indicates applications have
roughly 100 milliseconds (ms)—one third of the time it takes
to blink—before users feel like they’re waiting for a response.
To be considered real-time, a leaderboard needs to send a
request, have it processed, receive the response, and present
it to the player in less than 100ms.

Introduction

33

Redis E-Book / Build Better Experiences and a Stronger Community with Smart Matchmaking © 2021 Redis

Unfortunately, players don’t really notice when
matchmaking works perfectly. It’s rare for a 5-star game
review to go on about how great the matchmaking
algorithm is. But if something goes wrong, you’re pretty
much guaranteed to hear about it. And see its results
in your key game metrics like DAUs and MAUs. After all,
there’s only so long players will wait in the lobby for the
matchmaking service to run or stare at the spinning
wheel in a search bar before they jump to another game.
And speed by itself isn’t enough. Even if the matchmaking
runs quickly, it has to be accurate. If it matches them
with opponents or teammates that are too strong (or too
weak), then the game isn’t fun. Once again, they’ll jump,
and probably leave damaging reviews in the process.

In games with a PvP function, matchmaking can make
or break the player experience. Whether it’s team wars,
battle royales, races, 1:1 duels, or social games, PvP
needs to find players who are at similar power rankings
and currently available to play (or similar activity levels
if the PvP is asynchronous). Then they need to get
rapidly sorted and slotted into matches based on these
parameters. A good PvP experience quickly matches

players against others who offer a challenge, but can
be bested in a contest of skills or strategy. A poor
experience takes a long time to load, then matches them
against opponents who are too weak (removing the
challenge) or too strong (removing the ability to win).

Matchmaking is also used for team recruitment. It could
be called a clan, squad, house, country, or a hundred
other names, it’s all the same core idea: Players form up
into teams of similar power and ability levels. Sometimes
they’re competing on leaderboards, sometimes against
the computer, and sometimes against each other. In
every case, the player is usually given a range of teams
to choose from. They expect the team to include people
with similar play styles, levels, time zones, and more. And
they expect to be able to make a good team selection
quickly. After all, they signed up to play, not spend all
their time selecting a team.

Player selection also adds additional frontend
expectations to matchmaking. Players don’t want to
just be shuttled into whatever game is handy. They
want to be able to search for just the right match.

Players expect real-time response—
and accept nothing less

44

Redis E-Book / Build Better Experiences and a Stronger Community with Smart Matchmaking © 2021 Redis

Similar is a range, not an absolute
Matchmaking algorithms can look at more than just power
levels. Players that always lose can get discouraged (and players
that always win can get bored), so keeping players engaged
means finding a balance of challenge. This means looking at
variables beyond power levels, such as the number of recent
wins/losses. While players may not be aware of these additional
variables, it does increase the amount of computations that
have to fit within their low-latency expectations.

Adding search to matchmaking is a great way to
increase engagement, but it also introduces another
place where slow or faulty matchmaking could detract
from the player experience. When they search for
opponents (or allies), players want to instantly see an
array of good matches to choose from.

No matter what kind of game, all matchmaking use
cases have the same player expectation of seamless
execution. Players don’t mind waiting for other people
(such as waiting in the lobby area for battle royale

games while enough players join), but they don’t want
to wait for the game itself to load. In fact, players
expect the matchmaking to be so seamless that it’s
almost invisible.

This is where real-time matchmaking comes in. Real-
time matchmaking finds the right connections between
the data, quickly gives players an array of choices,
backfills the players to the right server spots based on
their choice, and runs through the matchmaking queue
so fast that players don’t even notice.

55

Redis E-Book / Build Better Experiences and a Stronger Community with Smart Matchmaking © 2021 Redis

Early online matchmaking was much simpler. Are
people online? Great, put them on the same server,
spit out a list of all available games for them to
wade through and let them sort it out themselves.
But this approach left way too much of the player
experience up to chance—with potentially disastrous
consequences. Modern matchmaking is sophisticated
and complex, going that extra mile to make sure that as
many players as possible have engaging experiences
that make the game enjoyable.

To pull off that degree of personalized sophistication,
matchmaking services have to process a massive
amount of data. Player compatibility can be determined
by variables like player rank, current inventory, location,
recent win/loss ratio, and more. For potentially millions
of players. It’s a lot of data to run through the queue,
sort, and then backfill into servers.

It gets further complicated when you add player choice
into the mix. Take an online racing game. Players
choose a racer, car, then track. These choices will have
to also be included in the matchmaking, and processed

fast enough to not slow down the players’ experience.
After all, how frustrating would it be if you choose your
favorite racer, the perfect car, and the exact track you
want, then lose your spot because matchmaking took
too long to process your request? Similar player-led
variables pop up in a wide variety of use cases, such
as game modes for first-person shooters (like Capture
the Flag or Free for All), player character types (for
games that only allow 1 of each type), a selection of
game maps, or tourneys where victory is a condition
for advancement.

Showing players those choices presents its own
technological demands. When a player goes to select a
game, they’re performing a specialized kind of search,
even if it doesn’t look like it on their end. But it’s not
enough for the search to just return an unsorted list
of results. The results need to weigh all the factors
above, then be sorted based on the best possibility of
matches. For example, a player searching for a trivia
game to join will need to be served options that best
match their social graph, then sorted by things like
number of available spots or time until game begins.

Modern matchmaking is more
complex than ever

66

Redis E-Book / Build Better Experiences and a Stronger Community with Smart Matchmaking © 2021 Redis

Incorporating all of these variables creates a richer,
more personalized experience, one which can
dramatically improve the player experience and
increase engagement. But it comes with added
complexity that has the potential to decrease
performance. Since decreased performance can have
a pronounced negative effect on player engagement,
this has the potential to erase any gains from
personalization.

Fortunately, there are many design and architecture
elements to optimize a matchmaking service for this
increased complexity. For example, storing data using
a graph data model could make it simpler and faster

to find relationships between records than it would
be with a relational database. Streamlined search
functionalities also help increase responsiveness.
Instead of having to run results through a separate
search database, integrated capabilities directly
interact with the same core database.

So yes, while the expectations from players demand
faster and more complex matchmaking services
than ever before, it’s also possible to build services
that complete the request within real-time speeds.
But doing so creates specific technical requirements
for the database and architecture behind the
matchmaking service.

77

Redis E-Book / Build Better Experiences and a Stronger Community with Smart Matchmaking © 2021 Redis

Above, we defined real-time response as less than 100ms
for receiving, processing, and returning the request. If
a database is going to power the above complexity and
have the latency for that 100ms speed, it needs to meet
some very exacting technical requirements:

 ` High database concurrency – With potentially
millions of match requests all hitting at the same
time, the database needs to have the ability to
handle concurrent operations without slowing down
performance.

 ` Low latency – As a general rule of thumb when
running applications in production, every millisecond
spent in the database means 100 milliseconds felt at
the application level, which means the database needs
to be capable of <1ms latency to hit the 100ms goal.

 ` Scalability with consistent performance – The
volume of matchmaking requests can surge or drop
in massive spikes. The database needs to scale and
deliver the same performance whether it’s the top of
the spike or the bottom of a trough.

 ` Matchmaking data model compatibility – Data
models like graphs can drastically increase the
speed of matchmaking, which means any real-time
matchmaking database needs to include support
and compatibility for those data models.

 ` Integrated capabilities – By integrating search or
other capabilities into the database, you cut down
on the number of transitions between services,
which helps the matchmaking service run faster
and the frontend experience more seamless.

 ` Flexible deployability – The matchmaking
services, and its database, needs to be able to
deploy wherever the games are run, whether
it’s in the cloud, on-prem, or in a hybrid cloud
environment.

 ` High global availability – It’s not enough for the
matchmaking service to run fast. It needs to be
reliably available whenever (and wherever) your
players are online, which means your database also
needs to have high availability while running on a
global scale.

Technical requirements for a smart
matchmaking database

88

Redis E-Book / Build Better Experiences and a Stronger Community with Smart Matchmaking © 2021 Redis

As you can see, there’s a lot that needs to happen between a
matchmaking request and slotting the player into a specific
game on a specific server. And it can only happen as fast and as
accurately as your database can reliably respond to requests.

Game Frontend Game Server Manager Server Farm

RediSearch

Matchmaking Game Backend

Game Server Queue
Redis Pub/Sub

1

2

3 4

5

6

99

Redis E-Book / Build Better Experiences and a Stronger Community with Smart Matchmaking © 2021 Redis

So if real-time response is <100ms, why does a real-
time database need <1ms latency? This comes back
to the rule of thumb above. It can easily take 50ms
for the request to move through the network, then
another 50ms for server and infrastructure time, leaving
somewhere between 0 and 1ms for database latency.
Unfortunately, this low latency isn’t possible with
traditional disk-based relational databases. To get that
kind of speed, you’re going to need to look at in-memory
NoSQL databases. For example, Redis Enterprise is
an in-memory NoSQL database capable of 50 million
operations per second at <1ms latency.

But as you saw in the technical requirements enough,
speed alone isn’t enough. A true real-time database

needs to be able to deliver real-time responsiveness at
any scale, with high availability, across the globe. And
it has to be able to do it within real-world architectures,
which means data model compatibility and the
right additional frontend capabilities for real-time
matchmaking from start to finish. With Redis, this is done
through modules. The RedisGraph module provides
graph database functionality, while the RediSearch
module provides frontend search capability.

All told, the real-time database behind any real-time
matchmaking service needs to have the capability for
matchmaking search and data models, automated
resharding for scaling, 99.999% availability, and the
ability to deploy in any environment.

Smart matchmaking needs
a real-time database

https://redis.com/docs/linear-scaling-benchmark-50m-ops-sec/
https://redis.com/docs/linear-scaling-benchmark-50m-ops-sec/
https://redis.com/modules/redis-graph/
https://redis.com/modules/redis-search/

Find out other ways a real-time database
can level up your game and increase player
engagement. Go to redis.com/gaming or
download the Level Up Your Gametech with
a Real-time Database white paper.

1010

Redis E-Book / Build Better Experiences and a Stronger Community with Smart Matchmaking © 2021 Redis

Conclusion
Real-time matchmaking can make or break your game, even if the players never know what’s going on behind the
scenes. Make sure your matchmaking increases engagement, DAUs/MAUs, and game revenue by powering it with a
real-time database.

http://redis.com/gaming
https://redis.com/lp/best-gaming-database/#bottom
https://redis.com/lp/best-gaming-database/#bottom

Data is the lifeline of every business, and Redis helps
organizations reimagine how fast they can process,
analyze, make predictions, and take action on the
data they generate. Redis provides a competitive
edge to any business by delivering open source and
enterprise-grade data platforms to power applications
that drive real-time experiences at any scale. Developers
rely on Redis to build performance, scalability, reliability,
and security into their applications.

Born in the cloud-native era, Redis uniquely enables
users to unify data across multi-cloud, hybrid and global
applications to maximize business potential. Learn more
about Redis at redis.com and sign up for your free trial.

About Redis

https://redis.io
https://redis.com/redis-enterprise-cloud/overview/
http://redis.com
https://redis.com/try-free/

