
© 2021 Redis

E-Book

JSON Web Tokens
(JWTs) Are Not Safe
An in-depth guide to why security
experts believe JWTs aren’t safe for user
sessions—and a battle-tested alternative

Table of
Contents

22

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

Chapter 1:
HTTP Sessions, Authentication, and Authorization. 3
The use case . . 3
1.	 Where to store the session data (client vs. database). . . 4
2.	 How to send session data to the client. 5
3.	 How the client can send session tokens to the

server for future requests. . 5
4. 	How the server can handle authentication

and authorization . . 6
5.	 When will the session expire . . 6
Section summary. . 7

Chapter 2:
Storing Sessions in a Traditional Database. 7
The main problem with this approach:. . 8
	 There are two ways to solve this problem:. 8

›	 Option 1: Eliminate database lookup (step four): . . . 8
›	 Option 2: Make the database lookup so

fast that the additional call won’t matter. 9

Chapter 3:
Storing Sessions in JWT . . 9
	 Token expiration. . 11

JWT is too liberal for a security spec and
so is vulnerable. . 11

›	 The “none” algorithm. . 12
›	 The algorithms are passed in an array 13
›	 Claims are optional. . 13

	 Other considerations and issues . . 14

›	 Length of tokens . . 14
›	 The state needs to be maintained anyway

(for rate-limiting, IP-whitelisting, etc.). 14
	 So why is JWT dangerous for user authentication?. . . . 15
	 Still trying to make JWT work? . . 15
	 Bottom line. . 16
	 When can I use JWT?. . 16
	 If I can’t use JWT, what else can I do?. 17

Chapter 4:
Storing Sessions in Redis. . 17
	 An example code snippet (Node.js). . 19

Chapter 5:
Sessions When Redis Is Your Primary Database. 20
	 Is anyone using this architecture?. . 21

Chapter 6:
Using Both Redis and JWT. . 22
	 [1] References:. . 25
	
About Redis. . 26

	

Introduction

33

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

JSON Web Tokens are popularly used for
managing user sessions. However, there
are many in-depth articles and videos from
subject matter experts (SMEs) of security
companies like Okta talking about the
potential dangers and inefficiencies of
using JWT tokens1. Yet, these warnings are
overshadowed by marketers, YouTubers,
bloggers, course creators, and others who
knowingly or unknowingly continue to
promote them.

Introduction

44

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

Below are some examples of SMEs talking about the security problems of JWT:

Source: “Why JWTs Are Bad for Authentication”—
Randall Degges, Head of Developer Advocacy, Okta,
a leading enterprise identity provider.

Source: Thomas H. Ptacek, a well-known security researcher
on Hacker News (see references below for links).

Source: “JWT should not
be default for your sessions”
(see reference below for links).

Source: “Stop using JWT for sessions”
(see reference below for links).

“JSON Web Tokens can be used to validate
user locally without the need for a
database but then you put yourself at risk
for massive security issues.”

“I don’t care if you want to use stateless client tokens. They’re fine. You
should understand the operational limitations (they may keep you up
late on a Friday scrambling to deploy a token blacklist), but, we’re all
adults here, and you can make your own decisions about that.

The issue with JWT in particular is that it doesn’t bring anything to
the table, but comes with a whole lot of terrifying complexity. Worse,
you as a developer won’t see that complexity: JWT looks like a simple
token with a magic cryptographically protected bag-of-attributes
interface. The problems are all behind the scenes.”

“Adopting them comes
with drawbacks. You either
forgo revocation, or you
need to have infrastructure
in place that is way more
complex than simply
adopting a session store
and opaque tokens.”

“To be clear: This article does not argue that
you should never use JWT—just that it isn’t
suitable as a session mechanism, and that it is
dangerous to use it like that. Valid usecases do
exist for them, in other areas.”

https://www.linkedin.com/in/rdegges/

Introduction

55

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

One of the main reasons for JWTs usage is the need for
speed. The other reason is that it’s simple to use. The last
reason is it’s a buzzworthy and friendly name that’s excellent
for marketing. The name combines “JSON” (which is
generally well liked), “Web” (for web), and “Token” (which
implies stateless), and all of this may make people think it’s
perfect for their web authentication. In reality, it’s not.

So this is a case in which the marketers have beaten out the
engineers and security experts.

But it’s not all bad, because there are regular long and
passionate debates about JWT on Hacker News (see here,
here and here), so there is hope. This amount of debate
should give you pause because security should ideally be a
black-and-white issue: either something is secure or it’s not.

By the end of this book, you’ll know the benefits and the
dangers of JWTs, and also the battle-tested solution that
thousands of companies use to overcome this.

https://news.ycombinator.com/item?id=21783303
https://news.ycombinator.com/item?id=27136539
https://news.ycombinator.com/item?id=24352360

Chapter 1

Figure 1: In the example at right,
you are making three differ-
ent requests and the server is
verifying if your request is valid
three different times.

BROWSER SERVER DATABASE

LOGIN IS LOGIN ALLOWED?

LIKE A TWEET IS LIKING A TWEET
ALLOWED?

POST A NEW TWEET IS POSTING ALLOWED?

66

HTTP Sessions, Authentication,
and Authorization

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

Before we get into JWTs,
let’s take a look at a use
case to better understand
sessions, authentication,
and authorization.

The use case
Imagine that you are using Twitter. You log in to the
platform, you “like” someone’s tweet, and then you write
a new tweet of your own. So you perform two additional
actions after you log in. You need to be authenticated and
authorized before you can perform each of the three spe-
cific actions. This is because HTTP is a stateless protocol,
which means that the HTTP request doesn’t store who you
are from one request to the next.

Chapter 1

77

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

After you log in, the servers typically create a session. The session is a container that houses data about the
user’s interaction with the website or service, and, as its name implies, its lifetime is typically bound by the user’s
log in and log out actions. A session typically will have the following information:

•	 User’s profile information, such as name, date of birth, email address, etc.
•	 User’s permissions, such as “user,” “admin,” “supervisor,” “super-admin,” etc.
•	 Other app-related data, such as shopping cart details if it’s a retail app, etc.
•	 Session expiration, such as one hour from now, one week from now, etc.

Managing sessions presents five major challenges:

1.	 Session data needs to be stored somewhere.
2.	 Since HTTP is stateless, session data must be sent back to the client so that the client can keep adding this

information to future requests.
3.	 The client then needs to send the session data back to the server for future requests.
4.	 The server needs to verify if the client’s information is valid; that is, “authentication” and “authorization.” For

example, whether or not the user who is liking a tweet is a “user” or “admin,” if the session expired or not, etc.
5.	 Session expiration. At some point, the session needs to expire to force people to log in again for security reasons.

Let’s look at each of these five points and get a general idea of how they work in most applications.

1. 	 Where to store the session data (client vs. database)
If you send the session data back to the client (say browser or mobile app), then you risk security issues. Someone
could access or intercept the session data, change that data, and access the server. In addition, there could be
a huge amount of data that’s going back and forth between the client and the server. So it needs to be stored in
the backend—typically in a database.

Chapter 1

Figure 2: Example of how a
session token maps to a session
inside a database.

User’s session table

SESSION TOKEN SESSION

fsaf12312dfsdf364351312srw12312312dasd1et3423r {user_name: raja, email: raja@redis.com,
isAdmin: true, shoppingCart:3, session_
expiration:Aug-25th}

sadfsdfsd24323456456dfdfasda454 {user_name: Mike, email: Mike@redis.com,
isAdmin: false, shoppingCart:1, session_
expiration:Aug-22th}

88

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

2.	 How to send session data to the client
If you create a session in the server (upon login) and then keep that data in the database, how can the client
know about it? In order to solve this problem, servers generate a session token that looks like a random string that
points to the actual session data in the database and sends it back to the client. The server either sends the ses-
sion token in the form of a cookie or an HTTP response.

The session token is an opaque random string that looks something like this:
fsaf12312dfsdf364351312srw12312312dasd1et3423r

In the database, that string points to the entire session data. It will look something like this:

Chapter 1

Figure 3: Example of how
sessions and cookies are
created and stored.

1. LOGIN

3. STORE SESSION

2.	 CREATE SESSION
TOKEN AND COOKIE

4. SEND COOKIE

BROWSER SERVER

99

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

3.	 How the client can send session tokens
to the server for future requests

Once the client receives the session token in the form of a cookie or as a token, it keeps
this information and adds this session token information to every future request.

Here is how it works:
1.	 User logs in.
2.	 The server creates a session, session token, and cookie.
3.	 The server then stores the session and the session

token into a database.
4.	 The server then sends the cookie that internally

contains the session token back to the browser.

CookieName: myAppCookie

id: fsaf12312dfsdf364351312srw12312312dasd1et3423r
httpOnly: true
MaxAge: 24 hours
Path:/

Chapter 1

1010

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

4. 	How the server can
handle authentication
and authorization

Upon every future request, the server queries the data-
base with the session token to get the actual session back,
and then the server checks for two things:

1.	 You are authenticated: Your login data is still valid
(verifies it is not tampered with, not expired, not
logged out, etc.)

2.	 You are authorized: You can log in but do you have
permission to do that specific action? (i.e., check if
you are an admin, data owner, user, employee, super
admin, etc.)

5. 	When will the session expire
Each session also has an expiration time, which can be
set by the backend developer as anything from 5 min-
utes to 30 days. After that set time, the session data will
be deleted. And if the user makes a call to perform some
action, typically the user will be denied permission, and
most client applications will redirect the user to the login
page, forcing them to log in again. And when they log in, a
new session is created with a new expiration time and the
cycle starts over.

Note: If you authenticate using OAuth, you get multiple
tokens such as “access token,” “refresh token,” and so on.
These are all there to provide finer control of when the
session should expire. For example, the client can use the
refresh token to extend the session for additional time
instead of logging people out.

Section summary

•	 HTTP is stateless, so to keep track of a user upon login, a “session” is created.
•	 A session is data about a user and their activity. It contains who they are, what they are authenticated and

authorized to do, and also to keep track of any specific product-related data.
•	 Session data is typically stored in a database.
•	 A “session token” that points to the session is created and sent to the client for future references.
•	 The client sends this “session token” for every future request (via request header or through a cookie) to

identify the user and other details that are stored in the session.
•	 The server retrieves the session from the session token by making an additional database call, checks if a valid

session exists, and if the session token and the session itself are valid, it lets the user take future actions, such
as liking a tweet, creating a tweet, etc.

https://en.wikipedia.org/wiki/OAuth

Chapter 2

1111

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

You just learned how sessions work. Now, let’s continue with the Twitter example and see how the entire
process works when you log in to Twitter and submit a tweet.

1.	 You log in with your username and password:
a.	 The server first authenticates the user.
b.	 The server then creates a session token and then stores that token along with the user’s info in some

database.

Note: A session token is a long unidentifiable string—aka opaque string—that looks like this:
fsaf12312dfsdf364351312srw12312312dasd1et3423r

2.	 The server then sends you a session token to the frontend mobile or web application.
a.	 This token is then stored in the cookie or in the local storage of the app.

3.	 Next, say you write and submit a tweet. Along with your tweet, the app will then also send the session
token (through a cookie or a header) so that the server can identify who you are. (But remember that the
token is just a random string, so how can the server know who you are just from the session token?)

4.	 When the server receives the session token, it won’t know who the user is, so it sends that to the data-
base to retrieve the actual user’s info (such as the userID) from that token.

5.	 If the user exists and is allowed to complete that action (i.e., send a tweet), the server allows them to do
the action.

6.	 Finally, it tells the frontend that the tweet was sent.

Storing Sessions in
a Traditional Database

Chapter 2

Figure 4: Illustrating the end-
to-end flow of using a regular
database as a session store.

Login Scenario

Send a Tweet

BROWSER
OR MOBILE

APP

BROWSER
OR MOBILE

APP

SERVER

SERVER

DATABASE

DATABASE

1. USERNAME + PASSWORD

3. SESSION TOKEN +
TWEET TEXT

1.A. AUTHENTICATE USER

4. SEND SESSION TOKEN

4.A. SEND USER INFO
TO SERVER

2. SEND SESSION
TOKEN TO THE APP

6. TWEET SUCCESSFULLY
SAVED

5. SAVE TWEET TO DB

1.B. STORE SESSION AND
USER INFO IN THE DB

1212

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

Chapter 2

1313

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

The main problem with
this approach
The main problem with this approach is that step four is
slow and needs to be repeated for every single action
the user does. So every API call leads to at least two slow
DB calls, which can slow down the overall response time.

There are two ways to solve this problem:
1.	 Somehow eliminate database lookup for users

completely (i.e., eliminate step four).
2.	 Make the extra database lookup much faster so that

the additional hop won’t matter.

Option 1: Eliminate database lookup (step four)

There are three different ways of achieving option 1:

1.	 Store the state in the server’s memory. However, this
can cause issues when you scale since this state is only
available on a specific server.

2.	 Use “sticky sessions.” This is when you instruct the
load balancer to always direct the traffic to a specific
server even after you scale up. Again, this can cause
different scaling issues and if the server goes down
(scale down), you’ll lose all the sessions.

3.	 Use JSON Web Tokens. We’ll investigate how to do this
in the following chapter.

Option 2: Make the database lookup so fast
that the additional call won’t matter

Simply use Redis. Tens of thousands of companies use
Redis for session storage. With sub-milliseconds latency,
it’s as if you are storing this data in the server itself. We’ll
look into this more later.

In the next chapter we’ll learn about how JWT works,
including its perceived benefits as well as potential risks.

Chapter 3

Figure 5: Example of the
different sections of the JWT
token.

1414

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

JWT, especially when used as a session, attempts
to solve the problem of time-consuming repeated
database calls by completely eliminating the database
lookup altogether.

The main idea is to store the user’s info in the session
token itself. This means, instead of some long, random
string, the actual user info is passed in the session token
itself. And to secure it, part of the token is signed using
a secret that’s only known to the server. So even though

the client and the server can see the user info part of
the token, the second part, the signed part, can only be
verified by the server. In the example below, the pink
section of the token contains the payload (user’s info) and
can be seen by both the client and the server.

But the blue part is signed using a secret string, the
header, and the payload itself. And so if the client tampers
with the payload (say impersonates a different user), the
signature will be different and won’t be authenticated.

Storing Sessions in JWT

Chapter 3

1515

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

The previous image on page 14 shows a JWT token. It includes <header>.<payload>.<signature>. The header
(highlighted in red) and the payload (highlighted in purple) are often not encrypted (and just base64 encoded),
but the signature (highlighted in blue) is signed.

Here is how our use case would look with JWT:

1.	 You log in with your username and password:
a.	 The server authenticates the user by querying the database.
b.	 The server then creates a JWT session token using the user’s info and the secret (no DB is involved).

2.	 The server then sends you a JWT token to the frontend application. For future activities, the user can just send
the JWT token to identify the user instead of logging in every time.

3.	 Next, say you again write and submit a tweet. When you send it, along with your tweet’s text, your app will also
send the JWT token (through a cookie or a header) so that the server can identify who you are. But how can
the server know who you are just from the JWT token? Well, part of the token already has the user information.

4.	 So when the server receives the JWT token, it uses the secret string to validate the signed section and gets
the user info from the payload section, thus eliminating the DB call.

5.	 If the signature is verified, it allows them to do the action.
6.	 Finally sends the frontend that the tweet was saved (i.e., the result of the action the user was originally

intended to take)

Going forward for every user action, the server simply verifies the signed section, gets the user info, and lets the
user complete that action, effectively skipping the DB call completely.

Chapter 3

Figure 6: Example of how JWT
helps eliminate DB lookup for
session store.

Login Scenario (JWT)

Send a Tweet (JWT)

BROWSER
OR MOBILE

APP

BROWSER
OR MOBILE

APP

SERVER

SERVER

DATABASE

DATABASE

1. USERNAME + PASSWORD

3. JWT TOKEN +
TWEET TEXT

1.A. AUTHENTICATE USER

4.	 VERIFY IF THE JWT
TOKEN IS VALID, IF SO,
GET THE USER INFO
DIRECTLY FROM JWT

2. SERVER CREATES A JWT
TOKEN AND SENDS IT BACK

(no DB is involved)

6. TWEET SUCCESSFULLY
SAVED

5. SAVE TWEET TO DB

1616

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

Chapter 3

1717

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

Token expiration
But there is one additional and important thing to know
about the JWT tokens—it uses an expiration time to
expire itself, which is typically set from 5 to 30 minutes.
And because it’s self-contained, you can’t easily revoke/
invalidate/update this expiration time. This is really where
the crux of the problem lies, but let’s look at some other
specification flaws.

JWT is too “liberal” for a
security spec and therefore
is vulnerable
The JWT specification is written more like the HTML
specification. In HTML, if you don’t close an HTML tag (say
a </div>), it’s still valid and the browsers continue to display
it. The goal is to try to make the “best effort” to render
something in the browser instead of throwing an error,
so it’s very “liberal” in that sense. But this causes a lot of
problems for browser developers and frontend engineers,
although thankfully the worst that can happen is just a bad
webpage rendering.

The JWT spec is similarly written. Instead of being very
strict in enforcing security rules and having built-in best
practices, it provides a lot of workarounds to allow for
edge cases and a variety of use cases. These workarounds
in turn can lead to security breaches.

And just like with HTML, it burdens the backend engineers
and library creators, who must know all the best practices
to avoid these loopholes. However, unlike with HTML, if
people don’t follow those best practices, it could cause a
lot more damage than a bad rendering, such as allowing
weak authentication.

The other problem is because the spec itself is so liberal,
JWT library creators don’t have a choice but to comply. For
that reason, backend engineers need to be very careful
when using JWT because what might be technically valid
according to the spec might not be secure.

	 On the next page are some examples
of these potential security issues:

https://datatracker.ietf.org/doc/html/rfc7519

Chapter 3

Client:

Server:

1818

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

1.	 The “none” algorithm
JWT allows various algorithms to sign the payload. One of them is the “none” algorithm. At a high level, if someone
specifies algorithm “none,” it means that the JWT libraries should ignore validating the signature completely. So all the
attacker needs to do is simply change the algorithm type to “none” and send whatever they want to the server. The
libraries will think that there is no need to validate the signature and will give access.

For example, say the attacker passes “alg” = none in the header. And say you are reading the alg from the request header
shown below (req.header.alg)—which is valid—you could then hit this vulnerability.

The solution to this problem is that the backend engineers need to ensure they ignore the “none” algorithm. Even Auth0,
which promotes JWT, got hit with a big security issue (read more about this here: Critical vulnerabilities in JSON Web
Token libraries [Auth0.com]).

https://insomniasec.com/blog/auth0-jwt-validation-bypass
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/

Chapter 3

1919

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

2.	 The algorithms are passed in an array
JWT allows specifying algorithms in an array during verification. This opens up another type of attack. It’s complicated
to explain, but the gist is that when you pass algorithms in an array, the library starts to check if one of these algorithms
works for the payload. Apparently, you can exploit it because you can use the RS256 key as HS256 secret. So if you have
the following code, an attacker could use the RS256 token as an HS256 secret and bypass the JWT security test. You can
learn more about this here (also listed in references #9).

The solution is to use just one algorithm, or use two different methods with just one algorithm each, and call two
methods independently.

3.	 Claims are optional
JWT provides a nice way to organize and ensure different claims
that could help improve security, but they are all optional. For
example, in the sample code to the right, sub, iss, aud, and so on
are all optional. This puts the burden on implementers to follow
best practices. If the spec had made some of them mandatory,
it would have solved a lot of security headaches.

For example, if the “aud” was mandatory, it would force
engineers to think about it and ensure that the JWT for one
service (e.g., “CartService”) doesn’t work for another service
(e.g., “BackOfficeService”). Because these are optional they are
often not required or configured correctly. To fix this, claims
must be set and checked against what is expected.

https://www.youtube.com/watch?v=rCkDE2me_qk&t=1587s
https://www.youtube.com/watch?v=rCkDE2me_qk&t=1587s

Chapter 3

2020

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

Other considerations and issues
1.	 Length of tokens. In many complex real-world apps, you may need to store a great deal of information, and storing

it in the JWT tokens could exceed the allowed URL length or cookie lengths, leading to problems. Also, you are now
potentially sending a large volume of data on every request.

2.	 The state needs to be maintained anyway (for rate-limiting, IP-whitelisting, etc.). In many real-world apps, servers

have to maintain the user’s IP and track APIs for rate-limiting and IP-whitelisting. So you’ll need to use a blazing-fast
database anyway. To think your app somehow becomes stateless with JWT is just not realistic.

So why is JWT dangerous for user authentication?
In addition to all the aforementioned issues, the biggest problem with JWT is the token revocation problem. Since it
continues to work until it expires, the server has no easy way to revoke it.

Following are some use cases that could make this dangerous:

1.	 Logout doesn’t really log you out. Imagine you logged out from Twitter after sending your tweet. You’d think that you
are logged out of the server, but that’s not the case because JWT is self-contained and will continue to work until it
expires. This could be 5 minutes or 30 minutes or whatever the duration that’s set as part of the token. So if someone
gets access to that token during that time, they can continue to use it to authenticate until it expires.

2.	 Blocking users doesn’t immediately block them. Imagine you are a moderator of Twitter or some online real-time
game where real users are using the system. And as a moderator, you want to quickly block someone from abusing
the system. You can’t, again for the same reason. Even after you block them, the user will continue to have access to
the server until the token expires.

3.	 JWTs could contain stale data. Imagine the user is an admin and got demoted to a regular user with fewer permis-
sions. Again, this won’t take effect immediately and the user will continue to be an admin until the token expires.

4.	 JWT’s are often not encrypted. Because of this, anyone able to perform a man-in-the-middle attack and sniff the JWT
now has your authentication credentials. This is made easier because the MITM attack only needs to be completed on
the connection between the server and the client.

There are ways to encrypt JWT tokens called JWE, but when you use this method, the clients (especially browsers and
mobile devices) won’t have a way to decrypt them to see the actual payload. At this point, you are essentially using the
JWT as a regular encrypted session token—at least from the perspective of the web apps and mobile apps.

https://medium.facilelogin.com/jwt-jws-and-jwe-for-not-so-dummies-b63310d201a3?gi=ff2a73e5b459

Chapter 3

A handy dandy (and slightly
sarcastic) flow chart about why

“your solution” doesn’t work.

I think I can make JWT work for
sessions by…

Figure 7. Source: Stop using
JWT for sessions, part 2: Why
your solution doesn’t work

…changing the signing
key when a user needs to
invalidate their sessions.

…keeping a list of revocations,
accessible to my servers, so I

can validate tokens.

Your blacklisting/
authentication server

goes down. What now?

…just storing an identifier in
the token, and storing the

data server-side.

… storing it in Local Storage
instead of a cookie, so that I

have far more space.

…making them expire very
quickly, so that a compromised

token is not a very big deal.

POINTLESS

Congratulations! You’ve
reinvented sessions, with all
their problems (notably, their
need for centralized state),
and gained nothing in the

process. But…

USABILITY PROBLEM

Sure, except now EVERY
SINGLE USER has been logged
out. For every time a user gets

compromised.

SECURITY PROBLEM

The implementation you are
using is less battle-tested,

and you run a higher risk of
vulnerabilities.

SECURITY PROBLEM

You can’t revoke the long-term
tokens, which means you’re

back to square one.

USABILITY PROBLEM

If your user goes offline for just
a few minutes, they will have to
login again when they return.

SECURITY PROBLEM

Unlike cookies, which are
protected from this, any

JavaScript on the page can
steal it. Including CDN scripts!

SECURITY PROBLEM

Once the attacker takes out
the server, he has free roam,

and there’s nothing you can do
to stop him.

“I’ll just use refresh tokens.”

Assume that any
unknown token is invalid.

Assume that any
unknown token is valid.

“But I can just change the signing key.”

“So then I’ll just have
a unique signing
key for every user,
and base it on
their password,
username or hash!”

2121

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

Still trying to make JWT work?
Assuming you got past all the spec’s issues and just want
to solve the expiration issue. One popular solution is to
store a list of “revoked tokens” in a database and check it
for every call. And if the token is part of that revoked list,
then block the user from taking the next action. But now
you are making that extra call to the DB to check if the
token is revoked, and so this negates the entire purpose of
using JWT altogether.

The diagram below does a good job of articulating
the challenges of using JWT and the issues with all the
workarounds. There are five different ways you can try to
make JWT better, but in all five scenarios, you’ll hit one
bottleneck or another. You should ask yourself, why do
you need to use a type of technology that needs so much
workaround? And by the time you implement all of the
workarounds to your satisfaction, you’d lose the benefits
of it to begin with.

http://cryto.net/~joepie91/blog/2016/06/19/stop-using-jwt-for-sessions-part-2-why-your-solution-doesnt-work/
http://cryto.net/~joepie91/blog/2016/06/19/stop-using-jwt-for-sessions-part-2-why-your-solution-doesnt-work/
http://cryto.net/~joepie91/blog/2016/06/19/stop-using-jwt-for-sessions-part-2-why-your-solution-doesnt-work/

Chapter 3

2222

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

Bottom line
Although JWT does eliminate the database lookup, it introduces security issues and
other complexities while doing so, therefore making it risky to use for user sessions.

When can I use JWT?
There are scenarios when it might make sense to use JWT, such as when you are doing
server-to-server (or microservice-to-microservice) communication in the backend and
one service could generate a JWT token to send it to a different service for authorization
purposes. Or other specific scenarios, such as a reset password, for which you can send
a JWT token as a one-time, short-lived token to verify the user’s email.

If I can’t use JWT, what else can I do?
The solution is to not use JWT at all for session purposes. But instead, use the traditional
but battle-tested way to more efficiently make the database lookup so blazing fast (sub-
millisecond) that the additional call won’t matter.

Chapter 4

Redis as a Session store
(plus rate-limiter, etc.)

Figure 8: Example of the
complete step-by-step flow of
using Redis as a session store.

Note that the lightning icon
indicates a blazing-fast speed,
and the snail icon indicates
slow speed.

Login Scenario

Send a Tweet

BROWSER
OR MOBILE

APP

BROWSER
OR MOBILE

APP

SERVER

SERVER

DATABASE

DATABASE

1. Username + password

3. Session token + tweet text

2. Send session token to the app

4.a Send user info to server

1.b Store session and
 user info in the DB

4. Send session token

6. Tweet successfully saved

5. Save tweet to DB

1.a Authenticate user

2323

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

If the answer to the problem we’ve outlined so far is to use
the tried-and-true method (i.e., store the sessions in a data-
base), but to make that database lookup so fast that the ad-
ditional call won’t matter, how exactly can this be achieved?

What you need is a database that can serve millions of
requests in sub-milliseconds. Thousands of companies,
serving billions of users, use Redis for this exact purpose.
With Redis, the additional database call is so fast that it no
longer presents a problem.

Storing Sessions in Redis

Chapter 4

2424

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

Here is how storing a session in Redis works

1.	 You log in with your username and password:
The server first authenticates the user.
›	 The server then creates a session token and stores that token along with the user’s info in Redis. It’ll look something

like this:
i.	 SET sess:12345 “{user:raja, shopping:3, DOB: 1/1/21}”
ii.	 Where

•	 12345 is the session token ID.
•	 “session:12345” is the Redis key.
•	 “{user: raja, shopping:3, DOB: 1/1/21}” is the value.

2.	 The server then sends you a session token to the frontend mobile or web application.
›	 This token is then stored in the cookie or in the local storage of the app.

3.	 Next, say you write and submit a tweet as in our previous example. Along with your tweet, your app will also send the
session token (through a cookie or a header) so that the server can identify who you are. But, as before, the token is
just a random string, so how can the server use it to identify you?

4.	 When the server receives the session token, it won’t know who the user is, so it sends that to Redis to retrieve the actual
user’s info (like userID) from that token.
›	 GET session:12345
›	 “{user:raja, shopping:3, DOB: 1/1/21}” //Response from Redis

5.	 If the user exists and is allowed to complete the action (i.e., send a tweet), the server allows them to do the action.
6.	 And finally, it tells the frontend that the tweet was sent (with the original response to the original request).

And because Redis is so fast, you don’t need to send large user data back and forth between the client and server—just a
session token is enough. You can get the actual payload from Redis in micro-seconds or sub-milliseconds. Since you are
not sending the data to the client, it’s harder for people to steal. And since the actual data is inside Redis, you don’t have
to depend on session expiration time, you can just verify it against the Redis database itself. And finally, you can delete
the user data from Redis when they log out, so you can always be sure of authentication and authorization.

As you can see, it’s an age-old approach of storing the data in a database, but by making it blazing fast, you effectively
eliminate the speed issue. And it has no security vulnerabilities like JWT.

Since people have been using Redis for session storage for ages, there are plenty of examples of how to implement this in
virtually all languages and frameworks. But here is a simple overview of how to store data in sessions in NodeJS. It works the
same way in every language.

Chapter 4

2525

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

An example code snippet (Node.js)
1.	 Import Redis module, create a redisClient, and then create a session.

Source: https://github.com/tj/connect-redis

https://github.com/tj/connect-redis

Chapter 4

2626

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

2.	 Store whatever user information you want into the session and it will be stored in
Redis. The example below shows page view count (req.session.views++) being stored
as part of the session data. So every time this page is visited, the count will increase.

Similarly, you can add req.session.userName, req.session.shoppingCartCount, and set
additional properties and associated value to each property and store them all within
the session. For example, you may add req.session.productName = “JSBook”, req.sesion.
quantity = “3”, rea.session.totalPrice= “$30”, etc.

Source: https://github.com/expressjs/session#reqsession

https://github.com/expressjs/session#reqsession

Chapter 5

Redis as a Primary DB

Figure 9: How using Redis as a
primary database simplifies the
overall architecture.

Login Scenario

BROWSER
OR MOBILE

APP

SERVER

1. Username + password

2. Send session token
to the app

Send a Tweet

BROWSER
OR MOBILE

APP 3. Session token + tweet text

6. Tweet successfully saved

SERVER

REDIS

REDIS

4.a Send user info to server

1.a Authenticate user

5. Save tweet to DB

1.b Store session and
 user info in the DB

4. Send session token

2727

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

Redis has been the leading database for caching and session storage for more than a decade now. But over the last
few years, Redis has evolved into a primary multi-model database that offers seven officially supported modules. For
example, you can use RedisJSON (10X faster vs. the market leader) and essentially have a real-time MongoDB-like
database, or use the RediSearch module (4X to 100X faster) and implement real-time full-text search like Algolia.

With Redis as your primary database, everything becomes blazing fast—not just your session storage. In this architecture, all
the application’s primary data and the sessions data—as well as everything else—lives side-by-side in the same database.

Sessions When Redis Is
Your Primary Database

https://redis.com/modules/get-started/
https://redis.com/modules/redis-json/
https://oss.redis.com/redisjson/performance/
https://redis.com/modules/redis-search/
https://redis.com/blog/search-benchmarking-redisearch-vs-elasticsearch/

Chapter 5

2828

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

1.	 You log in with your username and password:
›	 The server first authenticates the user by getting the user information from Redis (instead of a slow database).

i.	 HGET user:01
ii.	 > username: raja password wer8wrw9werw8wrw //Response

•	 Imagine the username and (encrypted) password are stored in “user:01” key as a Hashmap.
›	 The server then creates a session token and stores that token along with the user’s info into Redis. It will look

something like this:
i.	 SET sess:12345 “{user:raja, shopping:3, DOB: 1/1/21}”
ii.	 Where

•	 12345 is the session token ID.
•	 “session:12345” is the Redis Key.
•	 “{user: raja, shopping: 3, DOB: 1/1/21}” is the value.

2.	 The server then sends you a session token to the frontend mobile or web application.
›	 This token is then stored in the cookie or in the local storage of the app.

3.	 Next, say you wrote and submitted a tweet. Then along with your tweet, your app will also send the session token
(through a cookie or a header) so that the server can identify who you are. But the token is just a random string, so
how can the server know who you are just from the session token?

4.	 When the server receives the session token, it won’t know who the user is, so it sends that to Redis to retrieve (4a) the
actual user’s info (like userID) from that token.
›	 GET session:12345
›	 > “{user:raja, shopping:3, DOB: 1/1/21}” //Response from Redis

5.	 If the user exists and is allowed to do that action (i.e., send a tweet), the server allows them to complete the action.
6.	 And finally, it tells the frontend that the tweet was sent.

Chapter 5

Learn more about how you can use Redis as a primary database by watching these videos:
•	 Redis in 100 seconds [2021, 200,000+ views]
•	 Redis as a Primary DB (Ofer Bengal, CEO, Redis)
•	 Redis as a Primary DB(Yiftach Shoolman, CTO, Redis)
•	 Goodbye cache, Redis as a primary DB
•	 What is DBLess architecture? [2021]
•	 Can Redis be used as a Primary DB? [2021]

2929

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

Is anyone using this architecture?
Redis works with thousands of customers on a daily basis, and although Redis is still primarily used as a secondary
database, we have started to see this new DBless architecture emerge over the last couple of years. It started to get
more momentum as Redis itself became more feature-rich, powerful, and as more people found success. Companies
like Request Metrics have built their entire startup on this architecture and find it incredibly successful. Watch this video
in which Eric Brandes from Request Metrics explains how his company did it.

https://www.youtube.com/watch?v=G1rOthIU-uo
https://www.youtube.com/watch?v=SGEG5q4LT9s
https://www.youtube.com/watch?v=mspX4SfXnMA
https://redis.com/blog/goodbye-cache-redis-as-a-primary-database/
https://redis.com/blog/dbless-architecture-and-why-its-the-future/
https://www.youtube.com/watch?v=VLTPqImLapM
https://www.youtube.com/watch?v=BHR_mvafOEc
https://www.youtube.com/watch?v=BHR_mvafOEc

Chapter 6

3030

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

In this final chapter we will review another widely used
option that provides some of the benefits of JWT but
removes most of the security issues previously discussed
(with the exception of man-in-the-middle attacks). It is
possible to use JWT as a preliminary check while using
Redis as the secondary check. In such a scenario, if the
JWT verification succeeds, the server will still go to Redis
and double-check the information there. However, if the
JWT verification itself fails, there’s no need to worry about
checking the Redis database.

Another benefit of this approach is that you get to use
existing JWT libraries on both the frontend and backend
without having to develop your own custom way of stor-
ing the data in Redis (although it’s not a big deal).

One last thing to note here is that, as mentioned above,
this setup will still make the app vulnerable to potential
man-in-the-middle attacks between the clients and server
because the tokens are not encrypted.

As mentioned earlier, there is a way to encrypt JWT tokens
called JWE, but when you use this method, the clients
(especially browsers and mobile devices) won’t have a way
to decrypt them to see the actual payload. At this point,
you are essentially using the JWT as a regular encrypted
session token, at least from the perspective of the web
apps and mobile apps.

If you are using it for machine-to-machine communica-
tion, such as with microservices when you want to share
login info between two different services, you can then
share public keys to decrypt and see the JWT data—but
that’s a different use case.

Using Both Redis and JWT

https://medium.facilelogin.com/jwt-jws-and-jwe-for-not-so-dummies-b63310d201a3

Chapter 6

Figure 10: Example of JWT
+ Redis nodejs libraries from
npmjs.com.

3131

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

The best approach is to simply use encrypted sessions
and store them in Redis. If you want to go this route, there
are plenty of libraries that support this.

10.
SERVER
DELETES
THE JWT KEY
IN REDIS
IMMEDIATELY

4.
SERVER
FIRST
VALIDATES
JWT TOKEN

1.B.
SERVER
CREATES A
JWT TOKEN
AND SENDS IT
TO REDIS FOR
STORAGE

Chapter 6

JWT + Redis Login Scenario

Send a Tweet

User Logs Out

BROWSER
OR MOBILE

APP

BROWSER
OR MOBILE

APP

BROWSER
OR MOBILE

APP

1. Username + password

3. JWT token + tweet text

9. JWT token + user logs out

2. Send session token to the app

8. Tweet successfully saved

11. Send successful logout

REDIS

REDIS

REDIS

1.a Authenticate user

10.a Delete JWT key

1.c Store JWT into Redis

7. Save tweet to DB only
if the key exists in Redis

6. Redis tells if the
key exists or not

5. Ask Redis if the
JWT key exists

3232

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

In the following example, we will use Redis as the primary DB,
but the process is the same even if you have an additional DB.

Chapter 6

3333

Redis E-Book / JSON Web Tokens (JWTs) Are Not Safe © 2021 Redis

There are slightly different implementations of this
depending on the library, but in general this is how the
process works:

1.	 User logs in using username and password.
a.	 The server checks if they are valid.
b.	 The server creates a JWT token (instead of just

regular session tokens).
c.	 The server sends the JWT to Redis for storage.

2.	 The server sends the JWT token back to the client.

The user sends a tweet:
3.	 The user sends a tweet (along with the JWT token).
4.	 The server first validates the JWT token.
5.	 If the JWT token is valid, it then asks if the JWT token

exists in Redis.
6.	 Redis tells the server if the token still exists (we don’t

need to do any more validations; just checking if the key
exists is sufficient because JWT already does the job).

7.	 If the key exists, the server saves the tweet to the DB.
8.	 The server sends a response back to the client saying

the tweet was saved.

The user logs out:
9.	 The user then logs out.
10.	The server immediately deletes the token in Redis. So

going forward, step 7 fails.
11.	 The server sends a successful logout response to the

client.

Tip:
In order to store the JWT token in Redis and also expire it
automatically, use the following format.

SET <key> <value> EX <expiration time in seconds>

In the example below, we are storing the entire JWT token
as the key (you can also store just parts of it) and storing
its value as “1” to have some value (this could be anything),
and setting the expiration to one week.

SET sess:<entire JWT key> 1 EX 604,800

You can learn more SET options here:
https://redis.io/commands/set

[1] References:
1.	 Stop using JWT for sessions
2.	 JWT should not be your default for sessions
3.	 Why JWTs Are Bad for Authentication - Randall Degges (Head of Dev

Relations, Okta)
4.	 Stop using JWT for sessions, part 2: Why your solution doesn’t work
5.	 Thomas H. Ptacek on Hacker News
6.	 My experience with JSON Web Token
7.	 Authentication on the Web (Sessions, Cookies, JWT, localStorage, and more)
8.	 Thomas H. Ptacek’s blog
9.	 What makes JSON Web Tokens (JWT) secure?
10.	 Critical vulnerabilities in JSON Web Token libraries [Auth0.com]

https://redis.io/commands/set
http://cryto.net/~joepie91/blog/2016/06/13/stop-using-jwt-for-sessions/
https://evertpot.com/jwt-is-a-bad-default/
https://www.youtube.com/watch?v=GdJ0wFi1Jyo
https://www.youtube.com/watch?v=GdJ0wFi1Jyo
http://cryto.net/~joepie91/blog/2016/06/19/stop-using-jwt-for-sessions-part-2-why-your-solution-doesnt-work/
https://news.ycombinator.com/item?id=13866883
https://x-team.com/blog/my-experience-with-json-web-tokens/
https://www.youtube.com/watch?v=2PPSXonhIck
https://flaked.sockpuppet.org/about/
https://www.youtube.com/watch?v=rCkDE2me_qk&t=1587s
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/

Data is the lifeline of every business, and Redis helps
organizations reimagine how fast they can process,
analyze, make predictions, and take action on the data
they generate. Redis provides a competitive edge to
any business by delivering open source and enterprise-
grade data platforms to power applications that drive
real-time experiences at any scale. Developers rely on
Redis to build performance, scalability, reliability, and
security into their applications.

Born in the cloud-native era, Redis uniquely enables
users to unify data across multi-cloud, hybrid and global
applications to maximize business potential. Learn more
about Redis at redis.com and sign up for your free trial.

About Redis

https://redis.io
https://redis.com/redis-enterprise-cloud/overview/
https://redis.com/redis-enterprise-cloud/overview/
https://redis.com
https://redis.com/try-free/

