
© 2022 Redis

Understanding Streams in
Redis and Kafka
A Visual Guide

Table of
Contents

PART 1. Introducing the concept of streams. 3

What are streams? . 5

How streams are related to events 7

How streams compare to buffering. 8

Processing using just Buffers . . 8

Processing using Streams. . 9

The challenges of stream processing 10

Specialized stream processing systems. 16

PART 2. Comparing the approaches of Kafka and Redis
to handling streams. 18

How messages (event data) are stored. 19

Creating streams. . 20

Adding messages . . 23

Consuming messages. . 24

With Kafka. . 24

With Redis Streams. . 25

Approaches to scaling consumption. 28

Single partition and multiple consumers 28

Multiple partitions and multiple consumers. 30

In-order and in-parallel message processing. 37

The role of consumer groups in Redis Streams 43

How messages are acknowledged. 49

Letting the producer know that the message has been
delivered. . 51

With Kafka. . 51

With Redis. . 51

Summary: The two approaches compared. 53

Letting the consumer know that the message has been
received . . 54

The role of offsets in Kafka’s consumption
acknowledgements. . 54

The role of “pending lists” in Redis’ consumption
acknowledgements. . 58

The role of clusters in Kafka and Redis. 66

Kafka Clusters. . 66

Redis Clusters. . 67

22

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Part 1

Figure 1. Image credit: https://stock.
adobe.com/search?k=blind+men+and+ele
phant&asset_id=460307967

33

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Introducing the concept of streams
Streams are incredibly useful but can be a little confusing to describe. Part of this is due to the fact that they can be
explained in at least two distinct ways and that each description provides only half of the picture. Backend developers
(NodeJS and Java) see streams (in contrast to buffers) as a memory-efficient way of processing large amounts of data.
The big data folks take a different perspective. They view streams as a way of dealing with data that arrives over time or
as a means of decoupling the producers and consumers of that data.

It’s like that old story where
blind people are asked to

describe an elephant. The first
one touches the elephant’s leg
and says the elephant feels like
a tree. The second one touches

the elephant’s trunk and
concludes that the elephant
feels like a snake and so on.

44

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Even when you think you have a firm understanding of
it, stream processing can still be a very complex topic.
In fact, it’s difficult to maintain a good mental model of
streaming unless you really understand some stream
processing systems.

The goal of this e-book is to help you build that mental
model. I’ll use text, code snippets, and more than 50
illustrations to explain

1.	 How to think about streams and connect the
dots between different perspectives so you get a
bigger picture

2.	 Some of the challenges of handling streams
3.	 How stream processing systems such as Redis

Streams and Kafka work. We are using these two
systems as examples in the hope that you’ll gain a
more thorough understanding as opposed to learning
just how one system handles the processing.

By the end of this, you should have

•	 An expert-level theoretical understanding of
streams, the challenges of stream processing,
and how two stream processing systems (Kafka
and Redis streams) work

•	 Enough knowledge to do a proof-of-concept
of Redis Streams or Kafka and to determine
which one is best suited for you

•	 Enough theoretical knowledge to get a head
start on certification for either Redis or Kafka

OK, let’s get started.

Even though we’ll be covering deep and complex topics,
thanks to the format and the illustrations, it should be an
easy and fun read overall.

What are streams?
In computer science, a stream
is a sequence of data elements
(i.e., series of strings, JSON,
binary, raw bytes) that are made
available for processing in small
chunks over time. As with the
contents of a text file, this data
may be finite, but even then it
will be processed in pieces, one
word, or one line at a time in a
sequence (word after word, or
line after line) until all that data
has been processed.

10 GB

Processing
one byte at a time

BYTES STREAM 1 2 3 4 5 6 7 8

BYTE

1 2 3 4 5 6 7 8

BYTE

1 2 3 4 5 6 7 8

BYTE

TIME

Server

Figure 2: Processing bytes stream

In other cases, the data might
be infinite and might never
end. For example, say you
are processing data in a chat
messenger server. You’ll only
get a chat message to process
when someone writes one. And
it can happen any time and may
continue for as long as people
keep chatting.

TIME

Processing one JSON
document at a time

JSON STREAM

JSON chat JSON chat JSON chat JSON chat JSON chat

Server

Figure 3: Processing JSON stream

55

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

https://en.wikipedia.org/wiki/Stream_(computing)

This data can be internal as well
as external. It doesn’t have to
come from the outside world.
It could originate from different
systems sending messages
to each other. For example,
a webserver, after receiving
payment information, might
use a JSON message to tell
an email server to send an
email via a JSON message.
That is machine-to-machine
communication. You can also
think of these messages as
coming in the form of streams
because they can come in small
pieces and can come over time
and at any point in time.

Figure 4: Streams of messages sent using
machine-to-machine communication

JSON JSON JSON JSON

JSON

JSON

JSON

JSON

App Server Analytics Server

Web Server

Email Server

66

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

How streams are
related to events
An event is simply a mechanism,
a trigger that is activated when
something has occurred. For
example, when someone buys
a product, that triggers an event
that leads to the creation of a
JSON message that contains the
person’s information, payment
amount, product info, and so
on. This usually originates at
the browser or mobile app,
and then the message is sent
to the server. Here, the event is
the act of buying the product,
indicating something occurred.
And since the buying event
can happen at any time, the
resulting data (typically JSON)
representing that event flows
into the system as a stream.

Figure 5: How events generate streams of data

TIME

Processing one
“Buy event” at a timeEvents

JSON STREAM

JSON Buy JSON Buy JSON Buy JSON Buy JSON

Server

Data correcponding
to each “event”

77

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

How streams
compare to
buffering
If you ask backend engineers
who work in Java, NodeJS, and
other programming languages,
they’ll tell you that streams are
more efficient than buffers for
processing chunks of data. They
come from the perspective of
processing large data inside an
application server.

An example should help us to
understand their perspective a
little better.

Say you have a 10 GB file
containing hundreds of typos
that say “breams” instead of
“streams.” Let’s look at how to
use buffers to replace “breams”
with “streams,” and then we’ll
see how the process would
work using streams.

Figure 6: How buffers are used to process data

88

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Processing using just buffers

Here is how it works:
1.	 You first read the entire 10 GB file into RAM (can be slow to load all that data).
2.	 You then send this data to a data processor that will fix all the typos from “breams” to “streams.”
3.	 Once the data processor finishes processing, the new data will be stored back in the RAM

(so you may need an additional 10 GB of memory).
4.	 After all the processing is done, you write the entire file into a new file.

As you can see, this process not only tends to be slow, but it can also take up a lot of memory.

BUFFERS

Store the fixed data
back to disk

Processes the entire
file at a time

SERVER

10 GB

MyProject.txt

10 GB

New MyProject.txt

10 GB

MyProject.txt

10 GB 10 GB

MyProject.txt
Bu�er (RAM)

FIXED
MyProject.txt
Bu�er (RAM)

10 GB

New MyProject.txt

DATA PROCESSOR

1

3 42

Figure 7: How streams are used to process data (Basic “stream processing”)

STREAMS
(LINE-BY-LINE PROCESSING)

New file is written
one line at a time

Processes one
line at a time

Bytes that are part
of the 3rd line

Bytes that are part
of the 2nd line

The last byte that is
part of the 1st line

1st line in MyProject.txt
~100 Bytes Bu�er (RAM)

10 GB

MyProject.txt

10 GB

New MyProject.txt

SERVER

DATA PROCESSOR

BYTES
TO LINE

CONVERTOR

1 2

3 4

9

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Processing using streams

A better approach is to read the data as a stream. Here the data is transferred
in bytes, and you figure out how to group these bytes into tiny chunks, then
process each chunk.

Here is how it works:
1.	 Data comes in bytes; that is, one byte at a time.
2.	 The producer assembles those bytes into a chunk that you've specified.

For example, if you've decided to process the file a line at a time, it keeps
appending bytes until it spots a newline character that signals the end of
this particular chunk. This chunk is now ready to pass on to the consumer.

3.	 The consumer processes the line, looks for the existence of the typo and, if
it finds one, replaces "breams" with "streams."

4.	 The processed chunk is then written as a stream to the new file.
5.	 The whole process is repeated until the end-of-file character is detected.

At that point, the process is complete, and the stream is closed.

As you can probably see, compared to buffering, streaming has some clear
benefits. It's faster, more efficient, and places significantly less of a burden
on memory. Although both streaming and buffering require a buffer, in the
case of buffering, that buffer must be large enough to contain the entire
file or message. With streaming, the buffer only needs to be large enough
to accommodate the size of a specified chunk. Moreover, once the current
chunk has been processed, the buffer can be cleared and then used to
accommodate the next chunk. As a result, regardless of the size of the
file, the buffer consumes only 50-100 bytes of memory at a time. Second,
because the entire file doesn't need to be loaded into RAM first, the process
can begin right away.

Now that you’ve seen how backend engineers view streams, let’s look
at streams through the eyes of big data engineers. But first, in order
to do so, we need to better understand some of the challenges of
stream processing.

The challenges of
stream processing
Although streams can be a very
efficient way of processing huge
volumes of data, they come with
their own set of challenges. Let’s
take a look at a few of them. Figure 8: If the consumer is slower than the producer, you’ll need additional memory.

1.	 What happens if the consumer is unable to process the chunks as quickly as the producer creates them? Taking our
current example, what if the consumer is 50 % slower then the producer? If we’re starting out with a 10 GB file, that
means by the time the producer has processed all 10 GBs, the consumer would only have processed 5 GB. What
happens to the remaining 5 GB while it’s waiting to be processed? Suddenly, that 50-100 bytes allocated for data
that still needs to processed would have to be expanded to 5 GB.

STREAMS
(50% SLOWER CONSUMER)

New file is written
one line at a time

Processes one line at a time
50% slower than producer

Bytes that are part
of the 3rd line

Bytes that are part
of the 2nd line

The last byte that is
part of the 1st line

5 GB RAM due to
slow processor

10 GB

MyProject.txt

10 GB

New MyProject.txt

SERVER

DATA PROCESSOR

BYTES
TO LINE

CONVERTOR

1 2

3 4

1010

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Figure 9: When the consumer fails

2.	 And that’s just one nightmare scenario. There are others. For example, what happens if the consumer suddenly dies
while it’s processing a line? You’d need a way of keeping track of the line that was being processed and a mechanism
that would allow you to reread that line and all the lines that follow.

1st line in MyProject.txt
~100 Bytes Bu
er (RAM)

STREAMS
(FAILED CONSUMER)

New file is written
one line at a time

Fails processing after
certain number of lines

Bytes that are part
of the 3rd line

Bytes that are part
of the 2nd line

The last byte that is
part of the 1st line

10 GB

MyProject.txt

10 GB

New MyProject.txt

SERVER

DATA PROCESSOR

BYTES
TO LINE

CONVERTOR

1 2

3 4

1111

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

3.	 Finally, what happens if you need to be able to
process different events and send them to different
consumers? And, to add an extra level of complexity,
what if you have interdependent processing, when the
process of one consumer depends on the actions of
another? There’s a real risk that you’ll wind up with a
complex, tightly coupled, monolithic system that’s very
hard to manage. This is because these requirements
will keep changing as you keep adding and removing
different producers and consumers.

For example (Figure 10), let’s assume we have a large retail
shop with thousands of servers that support shopping
through web apps and mobile apps.

Imagine that we are processing three types of data
related to payments, inventory, and webserver logs

and that each has a corresponding consumer: a
“payment processor,” an “inventory processor,” and
a “webserver events processor.” In addition, there is
an important interdependency between two of the
consumers. Before you can process the inventory,
you need to verify payment first. Finally, each type
of data has different destinations. If it’s a payment
event, you send the output to all the systems, such as
the database, email system, CRM, and so on. If it’s a
webserver event, then you send it just to the database.
If it’s an Inventory event, you send it to the database
and the CRM.

As you can imagine, this can quickly become quite
complicated and messy. And that’s not even including the
slow consumers and fault-tolerance issues that we’ll need
to deal with for each consumer.

1212

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Figure 10: The challenge of tight coupling because of multiple producers and consumers

MULTIPLE INPUT AND OUTPUT STREAMS
(TIGHTLY COUPLED, MONOLITHIC)

SERVER

Payment events Payment proc

Webserver events Webserver proc

Inventory events Inventory proc

Database

Email

CRM

Dashboard

Other web
services

The inventory proc needs to check with payment proc
before it can reduce inventory count (dependency)

After processing, some data needs to go to all the systems (like payment
events data) and some are only for a few (like web events data)

BEFORE PROCESSING

AFTER PROCESSING

1313

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Of course, all of this assumes that you’re dealing with
a monolithic architecture, that you have a single server
receiving and processing all the events. How would you
deal with a “microservices architecture”? In this case,
numerous small servers (that is, microservices) would
be processing the events, and they would all need to
be able to talk to each other. Suddenly, you don’t just
have multiple producers and consumers. You have them
spread out over multiple servers.

A key benefit of microservices is that they solve the
problem of scaling specific services depending on
changing needs. Unfortunately, although microservices
solve some problems, they leave others unaddressed.
We still have tight coupling between our producers and

consumers, and we retain the dependency between the
inventory microservices and the payment ones. Finally,
the problems we pinpointed in our original streaming
example remain problems.

1.	 We haven’t figured out what to do when a consumer
crashes.

2.	 We haven’t come up with a method for managing slow
consumers that doesn’t force us to vastly inflate the
size of the buffer.

3.	 We don’t yet have a way to ensure that our data isn’t
lost.

These are just some of the main challenges. Let’s take a
look at how to address them.

1414

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Figure 11: The challenges of tight coupling in the microservices world

MULTIPLE INPUT AND OUTPUT STREAMS
(TIGHTLY COUPLED, MICROSERVICES)

Database

Email

CRM

Dashboard

Other web
services

After processing, some data needs to go to all the systems (like payment
events data) and some are only for a few (like web events data)

Payment
events

Webserver
events

Inventory
events

The inventory proc needs to check with
payment proc before it can reduce
inventory count (dependency)

Payment
Service

Web ev
Service

Inventory
Service

Invtr proc

Payment
Service

Web ev
Service

Inventory
Service

Invtr proc

Payment
Service

Web ev
Service

Inventory
Service

Payment Payment Payment

Web proc Web proc Web proc

Invtr proc

2

1

1515

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Specialized stream
processing systems

As we’ve seen, streams can be great for processing large
amounts of data but also introduce a set of challenges.
New specialized systems such as Apache Kafka and Redis
Streams were introduced to solve these challenges. In the
world of Kafka and Redis Streams, servers no longer lie at
the center, the streams do, and everything else revolves
around them.

Data engineers and data architects frequently share this
stream-centered worldview. Perhaps it’s not surprising
that when streams become the center of the world,
everything is streamlined.

Figure 12 illustrates a direct mapping of the tightly
coupled example you saw earlier. Let’s see how it works
at a high level.

Note: We’ll go into the details later in the context of Redis
Streams and Kafka to give you an in-depth understanding
of the following:

1.	 Here the streams and the data(events) are first-class
citizens as opposed to systems that are processing
them.

2.	 Any system that is interested in sending data
(producer), receiving data (consumer), or both sending
and receiving data (producer + consumer) connects to
the stream processing system.

3.	 Because producers and consumers are decoupled,
you can add additional consumers or producers at
will. You can listen to any event you want. This makes it
perfect for microservices architectures.

4.	 If the consumer is slow, you can increase consumption
by adding more consumers.

5.	 If one consumer is dependent on another, you can
simply listen to the output stream of that consumer
and then do your processing. For example, in Figure
11, the inventory service is receiving events from both
the inventory stream (purple) and also the output of
the payment processing stream (orange) before it
processes the inventory event. This is how you solve
the interdependency problems.

6.	 The data in the streams are persistent (as in a
database). Any system can access any data at any
time. If for some reason data wasn’t processed, you
can reprocess it.

A number of streaming challenges that once seemed
formidable, even insurmountable, can readily be solved just
by putting streams at the center of the world. This is why
more and more people are using Kafka and Redis Streams in
their data layer.

This is also why data engineers view streams as the center
of the world.

Now that we understand what streams, events, and
stream processing systems are, let’s take a look at Redis
Streams and Kafka to understand stream processing and
how they solve various challenges. By the end of this, you
should be an expert, at least in the theoretical aspects of
stream processing to the extent that you can readily do a
proof-of-concept for each system or easily earn Kafka or
Redis certification.

1616

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Figure 12: When we make streams the center of the world, everything becomes streamlined.

REDIS STREAMS

OR

Payment
events

Webserver
events

Inventory
events

Payments stream

Payments stream (post processing)

Webserver stream

Events stream (post processing)

Inventory stream

Inventory stream (post processing)

Inventory
Service

Invtr proc

Payment
Service

Payment

Web ev
Service

Web proc

Database Email CRM Dashboard Other web
services

1717

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Part 2 Comparing the approaches of Kafka
and Redis to handling streams
Apache Kafka is open source (Apache License 2.0,
written in Scala) and a leading distributed streaming
platform. It’s a very feature-rich stream processing
system. Kafka also comes with additional ecosystem
services such as KsqlDB and Kafka Connect to provide
for more comprehensive capabilities.

Redis is an open-source (BSD3, written in C), in-memory
database, considered to be the fastest and most loved
database. It’s also the leading database on AWS. Redis
Streams is just one of the capabilities of Redis. With Redis,
you’ll get a multi-model, multi-data structure database
with 6 modules and more than 10 data structures.

1818

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

So the key thing to remember is that, when you are thinking about Kafka and Redis Streams, you should really
think of Kafka and Redis (not just Redis Streams).

How messages
(event data) are
stored
Although their storage is similar,
Kafka and Redis Streams have
different ways of identifying
each message. In Kafka, each
message is given a sequence
number that starts with 0. But
each message can only be
partly identified by its sequence
number. That’s because of
another concept called a
“partition” that we’ll get into later.

In Redis Streams, each message
by default gets a timestamp
as well as a sequence number.
The sequence number is
provided to accommodate
messages that arrive at the
exact same millisecond. So
if two messages arrived at
the exact same millisecond
(1518951480106), their ids would
look like 1518951480106-0 and
1518951480106-1.

Figure 13: How messages look in Kafka and Redis Streams

Messages are stored in the same
order as they arrive. Messages are
partly identified by their sequence
number that starts at 0

Messages are stored in the same order
as they arrive. Messages are by default
identified by
<millisecondsTime>-<sequenceNumber>
1518951480106-0

Redis Streams
56628723-0 56628724-0 56628725-0 56628726-0 56628727-0

4 3 2 1 0

NEWEST OLDEST

TIME

NEWEST OLDEST

1919

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Creating streams

In Kafka, you create what’s
called a “topic.” You can think of
this as the name of the stream.
However, in Kafka, you also need
to understand four key concepts.

1.	 Partition: You can think of it
as a file on the disk.

2.	 Broker: You can think of the
actual server.

3.	 Replication Factor: The
number of duplicate copies
of the messages you want
to keep.

4.	 ZooKeeper: This is an
additional system that you
need to use in order to
manage Kafka.

We’ll get into all these in a bit but
for now let’s assume you have
one partition, one broker, and
one replication factor.

Figure 14: How messages look in Kafka for topic Email with one broker, one partition, and one replication factor

2 1 0

Email Service
NEWEST

TOPIC: EMAIL

BROKER 1 (SERVER)

OLDEST

TIME

PARTITION: 0

Apache
ZooKeeper

2020

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Note the command to create a Kafka topic with one partition and one replication factor would look like this:
> kafka-topics --zookeeper 127.0.0.1:2181 --topic Email --create --partitions 1
--replication-factor 1

ImportantImportant: Kafka no longer requires Zookeeper as of Kafka 3.3.1. Since 3.3.1, Kafka uses Kafka Raft (KRaft), which
is built-in. Instead of “--zookeeper” you now use “--bootstrap-server”.

Note: The example below (Figure 14a) shows how these would look in a Kafka cluster. We’ll discuss that later, but for now
just imagine that there is only one broker.

Figure 14a: A Kafka cluster with three brokers (servers), two topics (Email and Payment), where Email-topic has three parti-
tions that are spread across three brokers (10, 11, and 12) and Payment topic has two partitions that are spread across two
brokers (11 and 12).

BROKER ID: 10 BROKER ID: 11 BROKER ID: 12

Topic
Email
Partition 0

Topic
Payment
Partition 1

Topic
Email
Partition 1

Topic
Email
Partition 2

Topic
Payment
Partition 0

Apache
ZooKeeper

2121

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

In Redis, you simply create a
stream and give it a key. Note
that all the data within this
stream is part of this single key
(“Email”). Note also that this
key and its stream just resides
along with other keys and data
structures. Redis allows for a
number of data structures.
A stream is just one of them.
(See Figure 15.)

Figure 15: How messages look in Redis for an Email stream

JSON

Email Service

User

Email

myArray

myString

{”name”: “raja”, “email”: “raja@r.com”}

[”This”, “is”, “an”, “Array”]

”I’m a humble string”

Redis Streams
12-2 12-1 12-0

NEWEST OLDEST

TIME

Array

String

The command to create a Redis stream would look like this:
XADD Email * email_subject “1st email” email_body “hello world”

If the Email stream already exists, it will append the message. If it doesn’t exist, Redis will automatically create a
stream (using “Email” as its key) and then append the first message. The asterisk will auto-generate the message
id (timestamp-sequence) for this message.

2222

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Adding messages

Kafka has a concept called
“producers.” These are
responsible for sending
messages. They can also send
messages with some options
such as acknowledgments,
serialization format, and so on.

In the following command, you are using a Kafka producer CLI tool to send three messages to the Email topic.
$ kafka-console-producer --brokers-list 127.0.0.1:9092 --topic Email
> my first email
> my second email
> my third email

In Redis Streams, use the XADD command to send the data in a hash to the Email key.
XADD Email * subject “my first email”
XADD Email * subject “my second email”
XADD Email * subject “my third email”

In Redis Streams, you can set up acknowledgments and many other things as part of the Redis server or Redis
cluster settings. Remember that these settings will get applied to the entire Redis and not just for the Redis
Streams data structure.

2323

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Consuming messages

Both Kafka and Redis Streams
have the concepts of consumers
and consumer groups. We’ll
cover just the basics first.

$ kafka-console-consumer --bootstrap-server 127.0.0.1:9092 --topic Email --from-
beginning

Response:
> my first email
> my second email
> my third email

Note: The above consumer client will continue to wait for new messages in a blocking fashion and will display them when
they arrive.

With Kafka

In Kafka, the following command reads all the messages in the Email topic. The “bootstrap-server” is the main Kafka
server. The “--from-beginning” flag tells Kafka to send all the data from the beginning. If we don’t provide this flag, the
consumer will only retrieve messages that arrive after it has connected to Kafka and started to listen.

2424

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

1.	 Consume messages by using XREAD (equivalent to Kafka’s command). In the command below, “BLOCK 0”
tells the Redis CLI to maintain the connection forever (0) in a blocking manner. “Email 0” after the keyword
“STREAMS” means to get messages from the “Email” stream and from the beginning of time.

XREAD BLOCK 0 STREAMS Email 0

Response:
1) 1) 1518951480106-0
 2) 1) “subject”
 2) “my first email”
2) 1) 1518951482479-0
 2) 1) “subject”
 2) “my second email”
3) 1) 1518951482480-0
 2) 1) “subject”
 2) “my third email”

Notes:

•	 If you use “Email $”, then it would get only new messages from the “Email” stream. That is, “XREAD BLOCK 0 STREAMS
Email $”

•	 You can use any other timestamp id after the stream name to get messages after that timestamp id. That is, “XREAD
BLOCK 0 STREAMS Email 1518951482479-0”

With Redis Streams

In Redis Streams, you have two main options:

2525

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

2.	 Consume messages by giving a range of ids or by using some special commands.

c.	 You can use the command XRANGE and get everything from the smallest (“-”) timestamp to the latest one
(“+”).

> XRANGE Email - +

Response:
1) 1) 1518951480106-0
 2) 1) “subject”
 2) “my first email”
2) 1) 1518951482479-0
 2) 1) “subject”
 2) “my second email”
3) 1) 1518951482480-0
 2) 1) “subject”
 2) “my third email”

d.	 You can also provide timestamps directly.

> XRANGE Email 1518951482479 1518951482480

Response:
1) 1) 1518951482479-0
 2) 1) “subject”
 2) “my second email”
2) 1) 1518951482480-0
 2) 1) “subject”
 2) “my third email”

2626

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

c.	 You can limit the result by specifying a count.

> XRANGE Email - + COUNT 1

Response:
1) 1) 1518951480106-0
 2) 1) “subject”
 2) “my first email”

d.	 By prefixing the last id with a “(“, you can pick up where you left off, starting with the messages that
immediately followed the one with that id and keeping the “+” for the ending point. In the example below,
we are retrieving two messages that come after a message with a “1518951480106-0” id.

> XRANGE Email (1518951480106-0 + COUNT 2

Response:
1) 1) 1518951482479-0
 2) 1) “subject”
 2) “my second email”
2) 1) 1518951482480-0
 2) 1) “subject”
 2) “my third email”

2727

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Approaches to scaling
consumption

You just saw the basics of
producers and consumers in
both Kafka and Redis. Now,
let’s dig in and see how these
streaming services scale
consumption.

Figure 16: A “fan out” in Kafka when multiple consumers connect to a single topic

2 1 0

NEWEST

TOPIC: EMAIL

BROKER 1 (SERVER)

OLDEST

TIME

PARTITION: 0

Email Service

Email Service

Email Service

All messages

All messages

All messages

Apache
ZooKeeper

Note: Although it doesn’t work for this scenario, it works fine in the chat messenger clients where you can connect multiple
users to the same topic and they all receive all chat messages.

Single partition and multiple consumers

Scenario: Let’s imagine you have three emails that need to be processed in no particular order by three email processors
(consumers) so you can get the job done in one third the time.

In Kafka, let’s say you connected all three consumers to the Email topic. Then all three messages are sent to all three
consumers. So you end up processing duplicate messages. This is called a “fan out.”

2828

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

It works exactly like that in Redis
Streams as well.

Picture 17: A “fan out” in Redis Streams

Email Service

Email Service

Email Service

All messages

All messages

All messages

JSONUser

Email

myArray

myString

{”name”: “raja”, “email”: “raja@r.com”}

[”This”, “is”, “an”, “Array”]

”I’m a humble string”

Redis Streams
12-2 12-1 12-0

NEWEST OLDEST

TIME

Array

String

2929

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Multiple partitions and multiple consumers

In Kafka, there is a concept called a partition. You can think of a partition as a physical file on the disk. Partitions are used for
scaling purposes. However you should use them carefully, either with “keys” or with “consumer groups.” We’ll talk about both
of them in a bit. But just know that consumers generally don’t care and are not aware of the partitions. They just subscribe to
a “Topic” (the higher-level abstraction) and consume whatever Kafka sends them.

We are going to cover multiple cases of just using multiple partitions and multiple consumers, and it may look odd at first.

Case 1: An equal number of partitions and consumers (three each)

In the example below, we have created three partitions for the “Email” topic using the following command:

> kafka-topics --zookeeper 127.0.0.1:2181 --topic Email --create --partitions 3
--replication-factor 1

Now when we add three messages to the topic, they are automatically distributed to each of the partitions using a
hashing algorithm. So each partition gets just one message each in our example. But when consumers connect to this
topic (they are not aware of the partitions), all the messages that are in each partition are sent to each consumer in a
fan-out fashion.

3030

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Figure 18: A “fan out” when there are multiple partitions (default behavior)

TOPIC: EMAIL

BROKER 1 (SERVER)

TIME

0

PARTITION: 1

0

PARTITION: 2

0

PARTITION: 0

Email Service

Email Service

Email Service

All messages

All messages

All messages

Apache
ZooKeeper

Notes:

•	 Message order: The order in which consumers receive messages is not guaranteed. For example, “Email Service 1” might
receive “message 1”, “message 3” and finally “message 2”. Whereas “Email Service 2” might get them in the following
order: “message 3”, “message 1” and “message 2”. This is because message order is only maintained within a single parti-
tion.

•	 Later, we’ll learn more about the ordering and how to use keys and consumer groups to alter this default behavior.

3131

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Case 2: More partitions (three) and fewer consumers (two)

It still works the same. Each consumer gets all the messages irrespective of partitions. Message order is not guaranteed.

Figure 19: A “fan out” when there are more partitions than consumers

TOPIC: EMAIL

BROKER 1 (SERVER)

TIME

0

PARTITION: 1

0

PARTITION: 2

0

PARTITION: 0

Email Service

Email Service

All messages

All messages

Apache
ZooKeeper

3232

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Case 3: Multiple but fewer partitions (three) and more consumers (four)

It still works the same. Each consumer receives all the messages irrespective of partitions. Message order is still random.

Figure 20: A “fan out” when there are fewer partitions than consumers

TOPIC: EMAIL

BROKER 1 (SERVER)

TIME

0

PARTITION: 1

0

PARTITION: 2

0

PARTITION: 0
Email Service

All messages

Email Service

All messages

Email Service

All messages

Email Service

All messages

Apache
ZooKeeper

3333

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

In Redis Streams, there is no such concept as partitions. If you are using a standalong Redis Server, you don’t need to
worry about partitioning. If you do want to distribute messages in the same stream across several servers, then you
should use a combination of multiple stream keys and a sharding system like Redis Cluster, or some other applicaiton-
specific sharding system.

Let’s look at how you might implement something resembling partitions in Redis.

You can create “partitions” by creating multiple streams and then distributing data yourself. And on the consumer side,
unlike Kafka, since you have direct access to each of these streams, you can consume the data in a fan-out fashion by
connecting to all the streams, or by using a key or keys to connect to specific streams.

Say you created three streams: “Email:P0”, “Email:P1”, and “Email:P2”. And say you want to distribute the incoming
messages in a round-robin fashion. And finally you want to consume data in a “fan-out” fashion and also in a “per-
stream” fashion.

3434

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Consuming from Redis Stream “partitions” in a “fan out” fashion (Figure 21)

To consume the data in a “fan out” fashion, simply listen to all the streams (Figure 21).
//Consumer 1
XREAD BLOCK 0 STREAMS Email:P0 0 Email:P1 0 Email:P2 0
//Consumer 2
XREAD BLOCK 0 STREAMS Email:P0 0 Email:P1 0 Email:P2 0
//Consumer 3
XREAD BLOCK 0 STREAMS Email:P0 0 Email:P1 0 Email:P2 0

Figure 21: How to implement “partitions” in Redis streams and consume messages in a “fan out” manner

Email Service

Email Service

Email Service

All messages

All messages

All messages

Email:P0

Email:P1

Email:P2

Redis Streams
12-1

TIME

Redis Streams
12-0

TIME

Redis Streams
12-2

TIME

Notes:

•	 BLOCK 0 = Wait indefinitely for messages.

•	 ”Email:P0 0” = Read all messages from the beginning (0-0).

•	 By providing multiple stream names and “0”s each consumer can receive all messages.

3535

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Email Service

Email Service

Email Service

Only messages
from “Email:P0”

Only messages
from “Email:P1”

Only messages
from “Email:P2”

Email:P0

Email:P1

Email:P2

Redis Streams
12-0

TIME

Redis Streams
12-0

TIME

Redis Streams
12-0

TIME

Consuming from Redis Stream “partitions” in a per-stream fashion (Figure 22)

To consume the data in a “per-stream” fashion,
simply listen to the stream of your choice. Here
message orders are preserved (Figure 22).
//Consumer 1
XREAD BLOCK 0 STREAMS Email:P0 0
//Consumer 2
XREAD BLOCK 0 STREAMS Email:P1 0
//Consumer 3
XREAD BLOCK 0 STREAMS Email:P2 0

The following command creates a “check_out:p0”
Redis stream.
XADD check_out:p0 * message 0 cartId 1
items 5 cost $100
INCR checkout_counter //Use this for
round-robin

To implement a round-robin, you can keep a counter in
Redis, say checkout_counter, and increment it (INCR
checkout_counter) every time you send a new message
to a stream. Then use a modulus of the checkout_counter
(checkout_counter% number of streams) to determine
which stream you should send the next message to.

Figure 22: How to implement “partitions” in Redis Streams
and consume them in a “per-stream” manner

3636

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

In-order and in-parallel message processing

Tasks can be handled in order, in parallel, or with a
combination of both. As the name implies, with in-
order processing, tasks are handled in a specific order.
For example, when processing a credit card, we need
to first check for validity of the card, then do fraud
detection, and then check for a balance. With in-parallel
processing, tasks are handled simultaneously so they can
be completed more quickly. With in-order and in-parallel
processing, the system splits the tasks into groups of
tasks that need to be handled in order and then assigns
those to different consumers that can perform those
ordered tasks in parallel. Kafka and Redis Streams handle
this process a little differently. How they differ will become
clearer when you look at each system’s implementation.

How Kafka handles it

In Kafka, you can send metadata called a “key” (aka
“message key”) along with the message. When you do

that, those messages with the same key will end up
in the same partition. This helps in message ordering.
Message keys are also useful in other things such as log
compaction, but we’ll not cover that here.

Secondly, Kafka uses the concept of “consumer groups,”
where you define a bunch of individual consumers
as part of the same consumer group. Kafka will then
ensure that messages are distributed across different
consumers that are part of that group. This helps in
scaling consumption and also avoids “fan out,” so
each message is read by only one consumer. Another
key aspect of consumer groups is that, assuming the
number of consumers is greater than or equal to the
number of partitions, each consumer in a group is tied
to a single partition and is allowed to read messages
from just that partition. It cannot read messages
from multiple partitions. This way when you combine
message keys and consumer groups you’ll wind up with
highly distributed consumption, although order is still
not guaranteed in the event of a consumer failure.

Let’s look at an example to make it clear.

3737

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Figure 23: How consumer groups and message keys work in Kafka

TOPIC: EMAIL

BROKER 1 (SERVER)

TIME

PARTITION: 1

PARTITION: 2

PARTITION: 0
Email Service 1

All messages
in Partition 0

All messages
in Partition 1

All messages
in Partition 2

Email Service 2

Email Service 3

Email Service 4

Extra Stand-by

012

Consumer Group:
Email Application

Apache
ZooKeeper

Referring to Figure 23, let’s say
you are processing emails for an
e-commerce store. You need to
send the following emails and in
the following order:

1.	 Payment Received
2.	 Product Shipped
3.	 Product Delivered

In this case, to make sure they
are sent in that order, we can
use the order id (“order1234”)
as the key we send to Kafka to
ensure that all the messages
end up in the same partition.

3838

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

And secondly, we can define
a consumer group “Email
Application” and designate
four consumers as part of that
group. Kafka will then internally
connect each consumer to one
partition (1:1 mapping).

•	 If there are more consumers
than partitions, the
additional consumers will
be kept idle and won’t
receive any messages. So,
in our example, the fourth
consumer will be left idle and
won’t receive any messages.

•	 If there are fewer consumers
than partitions, then some of
the consumers will receive
data from multiple partitions.
However, there will still be
only one consumer (that’s
part of the group) per
partition.

Let’s see how this actually looks
in CLI.

1.	 Create a producer to send messages to “Email” topic with a key. Use the “=” sign to separate the “key”
(e.g., orderid1234) and the “value” (the actual message content).
$ kafka-console-producer.sh --broker-list localhost:9092 --topic Email l
--property
“parse.key=true” --property “key.separator==”

2.	 Then, send three messages with different statuses “payment_received”, “product_shipped” and
“product_delivered”.
> orderId1234={id:”orderid1234”, name: “light bulb”, price:” $1.00”, status:
“payment_received”}
> orderId1234={id:”orderid1234”, name: “light bulb”, price:” $1.00”, status:
“product_shipped”}
> orderId1234={id:”orderid1234”, name: “light bulb”, price:” $1.00”, status:
“product_delivered”}

3.	 Create four consumers within the consumer group “EmailApp” and connect them to the “Email” topic
(in four different CLI windows).
kafka-console-consumer --bootstrap-server 127.0.0.1:9092
--group EmailApp --topic Email
kafka-console-consumer --bootstrap-server 127.0.0.1:9092
--group EmailApp --topic Email
kafka-console-consumer --bootstrap-server 127.0.0.1:9092
--group EmailApp --topic Email
kafka-console-consumer --bootstrap-server 127.0.0.1:9092
--group EmailApp --topic Email

4.	 Here’s how just one of the consumers will receive all three messages.
> orderId1234={id:”orderid1234”, name: “light bulb”, price:” $1.00”, status:
“payment_received”}
> orderId1234={id:”orderid1234”, name: “light bulb”, price:” $1.00”, status:
“product_shipped”}
> orderId1234={id:”orderid1234”, name: “light bulb”, price:” $1.00”, status:
“product_delivered”}

3939

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

How Redis Streams handle it

Although, like Kafka, Redis
Streams has a concept of
“consumer groups,” it operates
differently. In fact, you don’t
need it for this specific use
case. We’ll learn in the next
section how Redis uses
consumer groups, but for now
let’s see how in-order and in-
parallel message processing
works in Redis.

Creating streams in Redis
is cheap. You simply define
multiple streams (essentially
simulating “partitions'') based
on some simple hash algorithm
and then send the messages
to those different streams.
Once you do, you will be able
to use different consumers to
consume those messages in
order and in parallel.

Let’s look at an example.

Let’s say someone purchases three different products. For each product, you have “payment_received”, “product_shipped”,
and “product_delivered” messages (for a total of nine), and you want to process them in order but also in parallel.

In the example (Figure 24) below, yellow, purple, and pink represent three products. Each product has three messages
representing its different states. As you can see, if you want to process three messages at a time, simply create three
streams and send each product’s data into a specific stream based on the product id or some unique identifier. This
is similar to “keys” in Kafka. After that, connect each consumer to each stream (i.e., 1:1 mapping). This is also similar
to Kafka. Then you’ll get both parallel processing and in-order message processing at the same time. As we already
mentioned, unlike with Kafka, with Redis you don’t really need consumer groups in this case.

Figure 24: Using Redis Streams to process multiple messages in parallel and in order

Email Service

Email Service

Email Service

AllMsgs in-order
from “Email:P0”

AllMsgs in-order
from “Email:P1”

AllMsgs in-order
from “Email:P2”

Email:P0

Email:P1

Email:P2

Redis Streams
12-0

TIME

Redis Streams
12-0

TIME

Redis Streams
12-0

12-1

12-1

12-1

12-2

12-3

12-2

TIME

4040

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Let’s see how it looks in the CLI.

1.	 Use a key to keep track of the number of emails so we can use it for round-robin.

INCR email_counter

2.	 Hash the unique id like the order id and take a modulus of the number of streams to determine which stream
(Email:P0 or Email:P1 or Email:P2) to send the data to.

var streamName = “Email:P” + ((murmurHash(“order1234”) % 3)

All we need to do is to convert a string like orderId into a number using a popular hash called “murmur” hash
and then take mod of the number of streams.

Note: Kafka also uses “murmur” hash for converting string into a number. There are “murmur” libraries in every
language, such as this one in Nodejs. A “murmur” hash, while not strictly necessary, is fast and sufficient given
you do not require cryptographic secutiry.

3.	 Send the messages to the appropriate stream. Notice that because of the hash we employed in the above
steps, we’ll have a 1:1 mapping between the order id and the stream name. So, for example, all the messages
with order id order1234 will go to “Email:P0” stream.

XADD Email:P0 * id order1234 name “light bulb” price “$1:00” status “payment_received”
XADD Email:P0 * id order1234 name “light bulb” price “$1:00” status “order_shipped”
XADD Email:P0 * id order1234 name “light bulb” price “$1:00” status “order_delivered”

XADD Email:P1 * id order2222 name “chair” price “$100:00” status “payment_received”
XADD Email:P1 * id order2222 name “chair” price “$100:00” status “order_shipped”
XADD Email:P1 * id order2222 name “chair” price “$100:00” status “order_delivered”

XADD Email:P2 * id order5555 name “Yoga book” price “$31:00” status “payment_received”
XADD Email:P2 * id order5555 name “Yoga book” price “$31:00” status “order_shipped”
XADD Email:P2 * id order5555 name “Yoga book” price “$31:00” status “order_delivered”

4141

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

4.	 Here’s how just one of the consumers will receive all three messages.

> orderId1234={id:”orderid1234”, name: “light bulb”, price:” $1.00”, status:
“payment_received”}
> orderId1234={id:”orderid1234”, name: “light bulb”, price:” $1.00”, status:
“order_shipped”}
> orderId1234={id:”orderid1234”, name: “light bulb”, price:” $1.00”, status:
“order_delivered”}

4242

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Consumer Group:
Email Application

Email Service 2

Email Service 1

Email Service 3

1 of 3 msg

Email:P1 Redis Streams

TIME

12-2 12-1 12-0

12-0

2 of 3 msg

12-1

3 of 3 msg

12-2

The role of consumer
groups in Redis Streams

In Redis Streams, although there
is no concept of “message keys”
like in Kafka, you can still get
message ordering without it.
However, it does have a concept
of “consumer groups” but again
it works differently from Kafka.

First, let’s understand how
consumer groups work in Redis
Streams and then later we’ll see
how Redis Streams handles
message ordering.

In Redis Streams you can
connect multiple consumers that
are part of the same consumer
group to a single stream and do
parallel processing without the
need for partitions.

Figure 25: Each member of the consumer group “Email
Application” has concurrently requested one message and has
been given one unread message

In the example below (Figure 25), we have created a consumer group called “Email Application” and have made three
consumers part of that group. Each consumer is asking for one message each at the same time for concurrent processing.
In this case, Redis Streams simply distributes unread (unconsumed) messages to each consumer.

Note: Each consumer within the consumer group needs to identify itself with a name. In Figure 25, we have named the
services that are part of the “Email Application” group as “emailService1”, “emailService2”, and “emailService3”.

4343

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Let’s see how it looks in the CLI.

1.	 Create a stream (Email), a consumer group (Email Application - “EmailApplnGroup”,) and set it to read all
messages from the beginning (“0”). Note: If you use “$” instead of “0”, then it will send only new messages.
Also, if you provide any other id, then it will start reading from that id. Note: MKSTREAM is used to make a
new stream if the stream doesn’t already exist.

XGROUP CREATE Email EmailApplnGroup 0 MKSTREAM

2.	 Add three messages to the stream.

XADD Email * subject “1st email” body “Hello world”
XADD Email * subject “2nd email” body “Hello world”
XADD Email * subject “3rd email” body “Hello world”

3.	 Let’s consume messages using the three consumers, each asking concurrently for one email.

XREADGROUP GROUP EmailApplnGroup emailService1 COUNT 1 STREAMS Email >
XREADGROUP GROUP EmailApplnGroup emailService2 COUNT 1 STREAMS Email >
XREADGROUP GROUP EmailApplnGroup emailService3 COUNT 1 STREAMS Email >

4.	 In this case, each consumer will receive one message.

1) 1) “Email”
 2) 1) 1) 1526569495631-0
 2) 1) “subject”
 2) “1st email”
 3) “body”
 4) “Hello world”

Notes:

•	 The “>” means, send me
new messages; that is, ones
that have not been read by
anyone (including me).

•	 Caution: If you use “0” or a
timestamp instead of “>”,
then Redis Streams will
only return messages that
have already been read (but
not acknowledged) by the
current consumer.

•	 Note that It doesn’t return
all the messages from the
mainstream. This is because,
when a consumer is part
of a group, an additional
list called a “pending list”
is created and treated as
a micro-stream that holds
messages for that particular
consumer. This is a little
tricky to understand, we’ll
discuss this in a bit

•	 “COUNT 1” means give me
just one message.

4444

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Consumer Group:
Email Application

Email Service 2

Email Service 1

Email Service 3

1 of 3 msg2 of 3 msg

Email Redis Streams

TIME

12-2 12-1 12-0

12-0

3 of 3 msg

12-2

12-1

As mentioned earlier, unlike
Kafka, each consumer within
the group can ask for as many
messages as it wants.

In Figure 26, we have
“emailService1” asking for
two messages instead of
one, while at the same time
“emailService2” is asking
for one. Finally, a little
bit later, “emailService3”
asks for one message. In
this case, emailService1
gets to process two
messages, emailService2
gets to process one, but
emailService3 doesn’t wind
up with any because there
are no more unclaimed
messages available.

Figure 26: How consumer groups work when one
consumer asks for more messages than the other

4545

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Consumer Group:
Email Application

Consumer Group 2:
Payment Application

Email Service 2

Email Service 1

Email Service 3

1 of 3 msg

Email Redis Streams

TIME

DASHBOARD SERVICE CONSUMER
(not part of any group)

12-2 12-1 12-0

12-0

2 of 3 msg

12-1

3 of 3 msg

12-2

Payment Service 1

Payment Service 2

1 of 3 msg

3 of 3 msg

2 of 3 msg

12-2

12-0 12-1

2

1 0

This scenario doesn't have to
be limited to a single consumer
group. It’s possible to have
multiple consumer groups as
well as regular consumers that
are not part of any group, all
consuming messages at the
same time. In Figure 27, there
are two different consumer
groups (“Email Application”
and “Payment Application”)
as well as a regular consumer
(Dashboard Service) that are all
consuming the messages.

Figure 27: Multiple consumer groups and non-grouped,
or standalone, consumers all consuming messages at
the same time

4646

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Consumer Group:
Email Application

Consumer Group 2:
Payment Application

Email Service 2

Email Service 1

Email Service 3

1 of 3 msg

Orders Redis Streams

TIME

DASHBOARD SERVICE CONSUMER
(not part of any group)

12-2 12-1 12-0

Email Redis Streams

TIME

12-2 12-1 12-0 12-0

2 of 3 msg

12-1

3 of 3 msg

12-2

Payment Service 1

Payment Service 2

1 of 3 msg

3 of 3 msg

2 of 3 msg

1 1

2

0

0

2

12-2 12-0

12-0 12-1 12-2 12-1

And finally, a consumer or a
consumer group can consume
data from multiple streams
(see Figure 28).

Figure 28: The consumer group (Payment Application) and a
consumer (Dashboard Service) consuming data from two streams

4747

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

To consume from multiple
streams, you simply need to list
them. This is how it looks like in
the CLI.

1.	 Making a consumer group’s (Payment Application Consumer Group 2 - “paymentApplnGroup”) consumer
(paymentService1) get two (Count 2) unread messages from Email stream (Email >) and also from the Orders
stream (Orders >)

XREADGROUP GROUP paymentApplnGroup paymentService1 COUNT 2
STREAMS Email > Orders >

2.	 Making the dashboard service get messages from the beginning from both Email (Email 0) and the Order
(Orders 0) streams and also waiting for any new streams in a blocking fashion (BLOCK 0).

XREAD BLOCK 0 STREAMS Email 0 Orders 0

Now that you have seen the basics of how stream processing works, let’s look at how some of the challenges are
addressed. One of the most effective ways to handle them is via “message acknowledgements.”

Let’s dig in.

4848

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

How messages
are acknowledged
In the context of stream
processing, acknowledgement
is simply a way for one system
to confirm to another system
that it has received a message
or that it has processed that
message.

Message acknowledgements
can be used to solve the
following four stream
processing challenges:

1.	 Providing message delivery
guarantees for producers

2.	 Providing message
consumption guarantees for
consumers

3.	 Enabling retries after
temporary outages

4.	 Permitting reassignment
following a permanent
outage

1.	 Providing message delivery guarantees for producers. Once a message has been sent, how can we be sure that it has
been received? We need the streaming system to acknowledge that it has in fact safely stored the incoming message.

Redis

or

Producer

Yes, I acknowledge that I’ve safely stored it

Streaming system

Consumer

Redis

or

Streaming system

Yes, I acknowledge that I’ve processed the message

Figure 29: How stream processing
systems acknowledge message
reception to producers

Figure 30: A consumer
acknowledgement to the streaming
system after processing the message

2.	 Providing message consumption guarantees for consumers. There needs to be a way for the consumer to
acknowledge back to the system that it has successfully processed the message.

4949

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Consumer

Redis

or

Streaming system

First time consuming

Consumer retrying after failed processing
and acknowledging after the third try

Retry 1
Retry 2
Retry 3

Yes, I acknowledge that I’ve processed the message

Consumer

NEW
Consumer

Redis

or

Streaming system

First time consuming

A new consumer takes over when another consumer crashes

Yes, I acknowledge that I’ve processed the message

1

4

3

2

Figure 31: If the consumer fails
to process the message on the
first try, a mechanism is needed
that enables it to retry processing
the message until it has been
successfully processed and that
enables it to acknowledge when
the message has finally been
processed.

Figure 32: When a consumer,
while attempting to read new
messages (1) permanently crashes
(2), a new consumer takes over
(3), successfully processes the
messages, and then sends back an
acknowledgment to the streaming
system (4).

3.	 Enabling retries after temporary outages. We need to be able to reprocess messages in the event that a consumer
dies while processing them. For this we need to have a mechanism that enables the consumer to acknowledge to
the system that it has processed a message. And if there is an issue, the processing system needs to provide a way
to re-process that message in case of a temporary failure (Figure 31).

4.	 Permitting reassignment following a permanent outage. And lastly, if the consumer permanently fails (say,
crashes), we need a way to either assign the job to a different consumer or allow different consumers to find out
about the failure and take over the job (Figure 32).

Now let’s look at how Kafka and Redis Streams handle each one of these.

5050

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Letting the producer
know that the message
has been delivered

With Kafka

In Kafka, you can have the
following configurations

Ack = 0: Send the message but
don’t wait for any confirmation
(you may lose data, but it will be
extremely fast).
Ack = 1: At least one of the
nodes in the cluster must
acknowledge receipt.
Ack = All: All the leader and
replicas must acknowledge
that they have received the
messages. This can be slow but
will ensure that the message
has been stored successfully in
both the leader and followers.

With Redis

In Redis Streams (especially in
Redis Enterprise), you have two
ways to acknowledge that a
message has been delivered.
You can configure Redis clusters
to have a weak consistency (but
more throughput) or a strong
consistency (with a little less
throughput).

Configuring weak consistency and durability

Let’s see how the weak consistency and durability configuration works. And once configured, it’ll work the same for all
types of Redis keys including Redis Streams. This is somewhat equivalent to “aAck=1” in Kafka.

Any updates that are issued to the database are typically performed with the following flow:
1.	 The application issues a write to the proxy.
2.	 The proxy communicates with the correct primary “shard” in the system that contains the given key.
3.	 Once the write operation is complete, an acknowledgement is sent back to the proxy.
4.	 The proxy sends the acknowledgment back to the application.

Independently, the write is communicated from primary to replica and replication acknowledges the write back to the
primary. These are steps 5 and 6.

Independently, the write to a replica is also persisted to disk and acknowledged within the replica. These are steps 7 and 8.

WEAK CONSISTENCY

1

4
Primary

Replica Storage

Proxy

2

6 5

3

7

8

APP

Redis Labs Cluster

Figure 33: How weak consistency configuration works

5151

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Configuring strong consistency and durability

Here’s how a strong consistency and durability works in Redis Streams. This is equivalent to “ack=All” in Kafka.

Option 1

With the WAIT command, applications can ask to wait for acknowledgments only after replication or persistence is
confirmed on the replica. The flow of a write operation with the WAIT command is shown below:
1.	 The application issues a write.
2.	 The proxy communicates with the correct primary “shard” in the system that contains the given key.
3.	 The acknowledgment is sent to the proxy once the write operation completes.
4.	 The proxy sends the acknowledgement back to the application.

Independently, the write is communicated from the primary to the replica and replication acknowledges the write back to
the primary. These are steps 5 and 6.

Independently, the write to a replica is also persisted to disk and acknowledged within the replica. These are steps 7 and 8.

STRONG CONSISTENCY

1

4
Primary

Replica Storage

Proxy

2

6 5

3

7

8

APP

Redis Labs Cluster

Figure 34: How strong consistency configuration (option 1) works

To read more about
consistency and
durability, see https://
docs.redislabs.com/
latest/rs/concepts/data-
access/consistency-
durability/

5252

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

https://docs.redislabs.com/latest/rs/concepts/data-access/consistency-durability/
https://docs.redislabs.com/latest/rs/concepts/data-access/consistency-durability/
https://docs.redislabs.com/latest/rs/concepts/data-access/consistency-durability/
https://docs.redislabs.com/latest/rs/concepts/data-access/consistency-durability/
https://docs.redislabs.com/latest/rs/concepts/data-access/consistency-durability/

With this flow, the application only gets the acknowledgment from the write after durability is achieved with
replication to the replica and to the persistent storage.

With the WAIT command, Redis will make a best-effort attempt to guarantee that even under a node failure or node
restart, an acknowledged write will be recorded. However there is still a possibility of failure.

See the WAIT command for details on the new durability and consistency options.

Summary: The two
approaches compared Consistency and durability Kafka Redis (Redis Streams)

Option 1
Ack = 0 (doesn’t wait for
acknowledgement)

Ignore or don’t wait for acknowledgement

Option 2
Ack = 1 (wait for the leader – but
not replicas – to acknowledge)

“Weak consistency configuration” where you get
acknowledgement only from the leader

Option 3
Ack = All (wait for all replicas to
acknowledge)

“Strong consistency config” (wait for all replicas
to acknowledge). Or use “Redis Raft”

5353

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

https://redislabs.com/blog/redisraft-new-strong-consistency-deployment-option/

Letting the consumer
know that the message
has been received

In order to understand
consumption guarantees, you’ll
need to know a little more about
some of the inner workings of
Kafka and Redis Streams, more
specifically, the concepts of
"offsets" in Kafka and "pending
lists" in Redis streams. These
concepts, in conjunction with
acknowledgements, will help to
solve the challenge of providing
consumption guarantees.

So let’s take a look at “offsets” in
Kafka and then “pending lists” in
Redis Streams before we return
to consumption guarantees.

The role of offsets in Kafka’s consumption acknowledgements

Offsets are simply incremental ids that are given to each message within a given partition for a given Topic. They start
from 0 for each partition for a given Topic. So there could be multiple messages with the same offset id. Therefore, the
only way to uniquely identify them in the entire system is by combining the offset id with the partition id and the topic
name (because there could be multiple topics with the same partition ids).

TOPIC: EMAIL OFFSETS

BROKER 1 (SERVER)

TIME

PARTITION: 1

PARTITION: 2

1 0234

1 023

1 023

4

56
PARTITION: 0

Apache
ZooKeeper

Figure 36: How
offsets look in Kafka

5454

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Committing offsets (i.e.,
consumer acknowledgement).
When a consumer processes
a message or a bunch of
messages, it acknowledges
this by telling Kafka the offset
it has just consumed. In
Kafka, this can be automatic
or manual. Following the
consumer's acknowledgement,
this information is written
to an internal topic called
“__consumer_offsets”, which acts
like a tracking mechanism. This is
how Kafka knows what message
to send next to consumers.

Figure 37: Consumers have processed up to offset 2 in partition 0, up
to offset 4 in partition 1, and up to offset 0 in partition 3.

TOPIC: EMAIL COMMITTED OFFSET

BROKER 1 (SERVER)

TIME

PARTITION: 1

PARTITION: 2

1 0234

1 023

1 023

4

56
PARTITION: 0

Apache
ZooKeeper

5555

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

This leads to three delivery
methods, each with its own
advantages:

1. At most once: In this
case, the consumer provides
acknowledgement as soon as
it receives the message, even
before it has had a chance
to process it. Although this
leads to higher throughput, if
the consumer dies before it's
able to actually process the
message, that message will be
lost. That's why this method
is called "at most once."
The consumer has only one
chance to request a group of
messages. Any messages it is
unable to process will be lost.

For example, in Figure 38,
a consumer receives three
messages and acknowledges
the offset for each before
processing them. As it turns
out, it couldn’t actually process
the third message (offset-2)
successfully. But since the offset
has already been committed,
the next time it asks for new
messages, Kafka will send them
from offset-3 onwards. As a
result, the message with offset-2
will fail to be processed.

Figure 38: How at-most-once message processing works

TOPIC: EMAIL COMMITTED OFFSET

BROKER 1 (SERVER)

TIME

PARTITION: 1

PARTITION: 2

1 0234

1 023

1 023

4

56
PARTITION: 0

Apache
ZooKeeper

5656

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

2. At least once: In this case,
the consumer will commit only
after processing. Let’s imagine
that for performance reasons
the consumer is reading
three messages at once
and committing once after
processing all three messages.
Let’s say it processed two
successfully but crashed before
it was able to process the third
one. In this case, the consumer
(or a different consumer) can
come back and request these
messages from Kafka again.
And because the messages
were never committed, Kafka
will send all three messages
again. As a result, the consumer
will end up reprocessing
messages that were already
processed (i.e., duplicate
processing). This approach is
called “at least once” because
the consumer isn’t limited to a
single request.

Figure 39: How at-least-once processing works

TOPIC: EMAIL COMMITTED OFFSET

BROKER 1 (SERVER)

TIME

PARTITION: 1

PARTITION: 2

1 0234

1 023

1 023

4

56
PARTITION: 0

Apache
ZooKeeper

1ST TRY

2ND TRY
(with duplicate processing)

5757

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

In the illustration above, assume that a consumer is
processing three messages at a time and committing an
offset after it has processed all three.

Here is how it works:

1.	 A consumer reads messages with offsets 0, 1, and 2.
2.	 It processes them.
3.	 It commits the offset to 2.
4.	 The next time it asks, it gets messages with offsets 3,

4, and 5.
5.	 Let’s say it processes offsets 3 and 4 but crashes

while processing offset-5.
6.	 A new consumer (or the same consumer) requests

messages from Kafka.
7.	 Kafka will again return messages with offset 3, 4, and 5.
8.	 Let’s say this time all three are successfully

processed. That’s good, but it leads to duplicate
processing of 3 and 4.

The way to mitigate this is to process the messages in a
way that it’s idempotent. This means even if you process
a message multiple times, the end result won’t change.
For example, if you set the exact price of some product
multiple times in a database, it won’t matter. When building
distributed applications, if you find that you cannot maintain
idempotency when processing messages, you likely need to
reconsider your logic to find a way to make it idempotent.

3. Exactly once: As the name suggests, it simply means
that you figure out a way to ensure that a message is
processed once and no more. For this you typically
need extra support (programming logic) to ensure and
guarantee this because there could be various reasons
for duplicate processing. Kafka only provides this level of
guarantee out of the box with Kafka-to-Kafka streams.

Now that we’ve seen how Kafka provides message
consumption guarantees, let’s take a look at how Redis
handles them. But first, in order to do so, we need to
delve into the Redis concept of the “pending list.”

The role of “pending lists” in Redis’ consumption acknowledgements

Remember that Redis Streams does not have a built-in
mechanism for partitions. Multiple consumers that are part
of the same consumer group can all connect to a single
stream and yet still process messages concurrently within
that stream.

To ensure that these consumers don’t process duplicate
messages, Redis Streams uses an additional data structure
called “pending lists” to keep track of messages that are
currently being processed by one of the consumers.

5858

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Consumer Group:
Email Application

Pending List for “emailService1”

Pending List for “emailService2”

emailService 2

emailService 1

emailService 3

Email Redis Streams

TIME

TIME

TIME

12-2

12-2

12-1 12-0

12-1 12-0

12-2

12-1 12-012-5 12-4 12-3

last_delivered_id

Looking at Figure 40,
“emailService1” has asked
for two messages and
“emailService2” has asked
for one. After the messages
have been received, Redis
Streams puts a copy (or a
pointer) of them in a separate
list for each consumer. So
“12-0” and “12-1” are added
to the list for “emailService1”
and “12-2” is added to the
list for “emailService2”. In
addition, it updates the “last_
delivered_id” id to “12-2”.
This allows for three key things.

Figure 40: How pending lists work in Redis Streams

1.	 The “last_delivered_id” id ensures that only unread messages are delivered to future requests from consumers
of that same group. This is kind of like the “offset commits” in Kafka.

2.	 The pending lists allow consumers, should they temporarily die during processing (that is, before acknowledgement),
to pick up where they left off.

3.	 The pending lists also allow other consumers to claim pending messages (using XCLAIM) in case the death of the
original consumer proves to be permanent.

5959

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Now, let’s imagine that
“emailService2” has completed
its processing (Figure 41) and
acknowledges this. Redis
Streams responds by removing
the processed items from the
pending list.

Consumer Group:
Email Application

Pending List for “emailService1”

Pending List for “emailService2”

emailService 2

emailService 1

emailService 3

Email Redis Streams

TIME

TIME

TIME

12-2

12-2

12-1 12-0

12-1 12-0

12-1 12-012-5 12-4 12-3

last_delivered_id

ACK

Figure 41: Following acknowledgment from emailService2,
the message “12-2” is removed from the pending list

6060

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Let’s see how it looks in the CLI.

1.	 Create a stream (Email), a consumer group, “Email Application” (EmailApplnGroup) and set it to read all
messages from the beginning (“0”). Note: If you use “$” instead of “0”, then it will send only new messages.
Also, if you provide any other id, then it will start reading from that id. Note: MKSTREAM is used to make a
new stream if the stream doesn’t already exist.

XGROUP CREATE Email EmailApplnGroup 0 MKSTREAM

2.	 Add six messages to the stream.

XADD Email * subject “1st email” body “Hello world”
XADD Email * subject “2nd email” body “Hello world”
XADD Email * subject “3rd email” body “Hello world”
XADD Email * subject “4th email” body “Hello world”
XADD Email * subject “5th email” body “Hello world”
XADD Email * subject “6th email” body “Hello world”

3.	 Let’s consume a message from the “emailService2” consumer that’s part of the “EmailApplnGroup” from the
“Email” stream.

XREADGROUP GROUP EmailApplnGroup emailService2 COUNT 1 STREAMS Email
//This will return a message that’ll look like this
1) 1) “Email”
 2) 1) 1) 1526569495632-1
 2) 1) “subject”
 2) “3rd email”

4.	 Imagine we processed that message and we acknowledged that.

XACK Email emailApplGroup 1526569495632-1

6161

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

As you can imagine, with Redis
Streams you can easily apply the
same delivery approaches used
with Kafka. Let’s take a look.

1. At most once: In this case,
you send an acknowledgement
when the messages have been
received but before they’ve
been processed. Using Figure 42
for reference, let’s imagine that
“emailService2” acknowledges
before fully processing the
message in order to quickly
consume more messages,
and that losing some message
processing doesn’t matter. In this
case, if the consumer crashes
after acknowledgement but
before processing the message,
then that would be lost. Note that
this message is still in the stream,
so you can potentially reprocess
it, although you’ll never know if
you’ll need to or not.

Consumer Group:
Email Application

Pending List for “emailService1”

Pending List for “emailService2”

emailService 2

emailService 1
Email Redis Streams

TIME

TIME

TIME

12-2

12-2

12-1 12-0

12-1 12-0

12-2

12-1 12-012-5 12-4 12-3

last_delivered_id

Figure 42: “At most once” processing in Redis Streams

6262

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

2. At least once: Again, this is
very similar to Kafka. A message
is only acknowledged after
it’s been processed. Here, if a
consumer is acknowledged
after processing multiple
messages, and it crashes
during the processing of one
of those messages, then you’ll
end up reprocessing all of the
messages, not just the ones
that failed to be processed.

Consumer Group:
Email Application

Pending List for “emailService1”

Pending List for “emailService2”

emailService 2

emailService 1
Email Redis Streams

TIME

TIME

TIME

12-2

12-2

12-1 12-0

12-1 12-0

12-2

12-1 12-012-5 12-4 12-3

last_delivered_id

1ST ROUND OF PROCESSING

2ND ROUND OF PROCESSING

Figure 43: “At-least once” processing in Redis Streams

In the example above, we have a consumer group called
“Email Application” with two consumers (“emailService1”
and “emailService2”).
1.	 “emailService1” reads the first two messages, while

“emailService2” reads the third message at the same time.
2.	 The pending list of emailService1 stores the first

two messages and similarly the pending list of
emailService2 stores the third message.

3.	 “emailService1” starts to process both messages (and
hasn’t committed yet). However, let’s say it temporarily
crashes after processing the first message but before

processing the second message.
4.	 When “emailService1” comes back later and reads from

the pending list, it will again see both messages in that
list.

5.	 As a result, it will process both messages.
6.	 Because of step 5, the consumer ends up processing

the first message twice.

And this is why it’s called “at least once." Although ideally
all pending messages will be processed in one pass, it
may require more.

6363

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

3. Exactly once: In Redis
Streams, you have multiple
ways of ensuring that each
message is processed exactly
one time.

Option 1: Because Redis
Streams is extremely fast, you
can read just one message
at a time and acknowledge it
after that message has been
successfully processed. In this
scenario, you’ll always have one
message in the pending list.
However, even though Redis
Streams is fast, consumers
can still be slow to process.
Consider the performance of
your consumers before using
this option.

Consumer Group:
Email Application

Pending List for “emailService1”

Pending List for “emailService2”

emailService 2

emailService 1
Email Redis Streams

TIME

TIME

TIME

12-2

12-1

12-1 12-0

12-0

12-1

12-012-5 12-4 12-3

last_delivered_id

1ST ROUND OF PROCESSING

2ND ROUND OF PROCESSING

Figure 44: “Exactly once” (Option 1) processing in Redis Streams
(done by processing one message at a time)

6464

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Option 2: As an alternative
to Option 1, you can also use
additional data structures, such
as Redis Sets, to keep track of
messages that have already
been processed by some
consumer. This way you can
check the set and make sure
the message’s id is not already
a member of the set before you
request it from the stream.

Consumer Group:
Email Application

Pending List for “emailService1”

Pending List for “emailService2”

emailService 2

emailService 1

Processed
msgs (set)

Email
Redis Streams

TIME

TIME

TIME

12-2

12-1

12-1 12-0

12-0

12-1

12-012-5 12-4 12-3

12-0 12-1 12-3

last_delivered_id

1ST ROUND OF PROCESSING

2ND ROUND OF PROCESSING

Store the processed message ids
in a set to help with Exactly-once

delivery symantics

Figure 45: “Exactly once” (Option 2) processing in Redis Streams (using a set
data structure to keep track of the messages that have already been processed)

6565

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

The role of clusters
in Kafka and Redis
In this section we’ll go over
some high-level aspects of
clusters. This is a very deep
topic so we’ll only cover the
key aspects of it.

Kafka Clusters

Kafka is a distributed system. That means you typically
wouldn’t use it with just one server but would be more
likely to use it with at least three servers. Clusters provide
high availability and durability. If one of the servers goes
down, the others can still keep serving the clients.

In Kafka each server is called a broker. In production,
Kafka clusters might have anywhere between three
brokers (minimum) to hundreds of brokers.

The example below (Figure 46) shows how a typical
Kafka cluster would look. It shows a Kafka cluster with
three brokers (servers), two topics (Email and Payment),
where the Email topic has three partitions spread
across three brokers (10, 11, and 12), and the Payment
topic has two partitions that are spread across two
brokers (11 and 12).

BROKER ID: 10 BROKER ID: 11 BROKER ID: 12

Topic
Email
Partition 0

Topic
Payment
Partition 1

Topic
Email
Partition 1

Topic
Email
Partition 2

Topic
Payment
Partition 0

Apache
ZooKeeper

Figure 46: A Kafka cluster consisting of
three brokers (servers), two topics (Email and
Payment), and five partitions

6666

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Redis Clusters

With Redis, things work pretty much the same way. In
the example below, the Redis cluster has three nodes.
The messages for “Email” are sent to three different
streams that are in three different nodes. The messages
for “Payment” are sent to two different streams that are in
two different nodes.

The only caveat if you’re using the OSS cluster is that you
don’t have a proxy for these cluster nodes. That means
your client libraries will need to manage where the data
goes by directly connecting to each node within the
cluster. But thankfully, the cluster APIs make it very easy
and most of the Redis client libraries in all programming
languages already support it.

NODE 1 NODE 2 NODE 3

Email:
P0
stream

Payment:
P1
stream

Email:
P1
stream

Email:
P2
stream

Payment:
P0
stream

Figure 47: A Redis OSS cluster with three brokers (servers), two topics (Email and Payment), and five streams

6767

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

On the other hand, Redis Enterprise provides a proxy
layer on top of the clusters. This way the client can just
connect to the proxy and doesn’t have to worry about
exactly which server the data is going to or coming from.

By the way, in Redis clusters, if the key contains curly
braces (“{}”), then only the text within those curly braces
will be hashed. This means you can name the keys as
“Email:{P0}” and “Payment:{P1}”.

NODE 1 NODE 2 NODE 3

Email:
{P0}
stream

Payment:
P1
stream

Email:
{P1}
stream

Email:
{P2}
stream

Payment:
P0
stream

REDIS ENTERPRISE CLUSTER PROXY

Figure 47a: A Redis Enterprise cluster with three brokers (servers), two topics (Email and Payment), and five streams

6868

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

1.	 Let’s say you are running four Redis instances (four
shards) on a single node. And imagine you have split
the data across these four instances. This is mainly
for parallel processing and to fully utilize all the CPU
and memory resources.

2.	 Now, let’s say you want to move to two machines,
that is, you want to “scale out”. So you add a second
machine. At this point you have scaled out, and this
node is now part of the cluster. But this new node is
empty to begin with. It contains no Redis instances
or data.

3.	 Next, let’s say you move two shards to the second
node in order to better distribute the load. This is
called “rebalancing”.

4.	 Finally, in order to increase parallel processing and
to fully utilize all the CPUs, you may add more Redis
instances and split the data across those instances. This
is called “resharding”. So let’s say you’ve added two more
instances/shards in each node. Now in the beginning
these new instances won’t have any data. So you need to
use a process called resharding to split and move some
of the existing data. In the end you wind up with a total
of eight shards and much higher throughput.

SCALING OUT, RESHARDING & REBALANCING

SCALE OUT REBALANCING RESHARDING

Figure 48: Using Redis Enterprise to increase your throughput by scaling out, rebalancing, and resharding your data

By the way, in Redis you can run
multiple Redis instances in the
same node. These are called
shards.

Figure 48 illustrates how the
Redis cluster helps scale Redis.
Here is how it works.

6969

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

Hopefully this ebook has provided you with a solid foundation for understanding both Kafka and Redis Streams. It’s
important to note that Kafka is a very robust streaming platform that is geared towards highly complex, distributed
applications when you have very specific requirements. In contrast, Redis Streams is a great way to add streaming to
an existing application that is already using Redis. Redis Streams has much lower management overhead, and if you
are already using Redis for say, caching, then you can implement Redis Streams without setting up and maintaining a
separate system.

If you’re interested in learning more and taking this further, check out the free Redis Streams course (RU202) offered at
Redis University.

Conclusion

7070

Redis E-Book / Understanding Streams in Redis and Kafka – A Visual Guide © 2022 Redis

https://university.redis.com/courses/ru202/

	Introducing the concept of streams
	What are streams?
	How streams are related to events
	How streams compare to buffering
	Processing using just Buffers
	Processing using Streams

	The challenges of stream processing
	Specialized stream processing systems

	Comparing the approaches of Kafka and Redis to handling streams
	How messages (event data) are stored
	Creating streams
	Adding messages
	Consuming messages
	With Kafka
	With Redis Streams

	Approaches to scaling consumption
	Single partition and multiple consumers
	Multiple partitions and multiple consumers
	In-order and in-parallel message processing

	The role of consumer groups in Redis Streams

	How messages
are acknowledged
	Letting the producer know that the message has been delivered
	With Kafka
	With Redis
	Summary: The two approaches compared

	Letting the consumer know that the message has been received
	The role of offsets in Kafka’s consumption acknowledgements
	The role of “pending lists” in Redis’ consumption acknowledgements

	The role of clusters in Kafka and Redis
	Kafka Clusters
	Redis Clusters

