
© 2022 Redis

E-Book

courses

courses_instructors

instructors

courses

temperatures

products

employees

products

location

instructors

8 Data Modeling Patterns
in Redis

Table of
Contents

Before you Get Started . . 3

Introduction . . 3

By the end of the book you will have 3

SQL versus NoSQL . . 4

Modeling 1-to-1 Relationships . . 11

1-to-1 Relationships using SQL . . 12

1-to-1 Relationships using Redis . . 13

1-to-1 Relationships using Redis with the Partial Embed
Pattern . . 14

Modeling Many-to-Many Relationships 17

Pattern 1: Relationship with Bounded Sides 18

Pattern 2: Relationship with One Unbounded Side 20

The Aggregate Pattern . . 22

Without the Aggregate Pattern . . 24

With the Aggregate Pattern . . 26

The Polymorphic Pattern . . 28

The Bucket Pattern . . 33

Working with Time-series Data in Redis 34

Aggregating with Time-series Data with Redis 37

The Revision Pattern . . 39

The Tree and Graph Pattern. . 44

The Schema Version Pattern . . 48

Summarizing The Patterns. . 53

The Embedded Pattern . . 54

The Partial Embed Pattern . . 54

The Aggregate Pattern . . 54

The Polymorphic Pattern. . 54

The Bucket Pattern . . 55

The Revison Pattern . . 55

The Tree and Graph Pattern . . 55

The Schema Version Pattern . . 55

Conclusion . . 56

22

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Before you Get
Started
If you want to follow along with
some of the code examples
used in this e-book, you can
clone the GitHub repository.

33

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Introduction
When someone is looking to use NoSQL for an application, the question that most often comes up is, “How do I structure
my data?” The short answer to this question is, as you might guess, it depends. There are several questions that can
inform how to structure your data in a NoSQL database.

Is your application read heavy, or write heavy? What does the user experience of your application look like? How does
your data need to be presented to the user? How much data will you be storing? What performance considerations do
you need to account for? How do you anticipate scaling your application?

These questions are only a small subset of what you need to ask yourself when you start working with NoSQL. A common
misconception with NoSQL databases is that since they are “schemaless” you don’t need to worry about your schema.
In reality, your schema is incredibly important regardless of what database you choose. You also need to ensure that the
schema you choose will scale well with the database you plan to use.

In this e-book you will learn how to approach data modeling in NoSQL, specifically within the context of Redis. Redis is a
great database for demonstrating several NoSQL patterns and practices. Not only is Redis commonly used and loved by
developers, it also is a multi-model database. This means that while many of the patterns covered in this e-book apply to
different types of databases (e.g. document, graph, time series, etc.), with Redis you can apply all of the patterns in
a single database.

By the end of this, you should have

•	 A firm understanding of how to approach modeling data in Redis as well as in NoSQL generally.
•	 An understanding of several NoSQL data modeling patterns, their pros and cons, as well as use cases for

them in practice.
•	 A working knowledge of how to actually write code (with examples) to take advantage of NoSQL patterns

within Redis.

I’m sure you’re eager to get started, so let’s dive in!

I’m sure at a certain level you understand the difference between SQL and NoSQL. SQL is a structured query language
whereas NoSQL can mean several different things depending on the context. However, generally speaking, the approach
to modeling data is fundamentally different in NoSQL than in SQL. There are also differences in terms of scalability, with
NoSQL being easier to scale horizontally.

When building applications you are probably using an object-oriented language like JavaScript, Java, C#, or others.
Your data is represented as strings, lists, sets, hashes, JSON, and so on. However, if you store data in a SQL database
or a document database, you need to squeeze and transform the data into several tables or collections. You also need
complex queries (such as SQL queries) to get the data out. This is called impedance mismatch and is the fundamental
reason why NoSQL exists.

A large application might use other systems for data storage such as Neo4J for graph data, MongoDB for document
data, InfluxDB for time series, etc. Using separate databases turns an impedance mismatch problem into a database
orchestration problem. You have to juggle multiple connections to different databases, as well as learn the different client
libraries used.

With Redis, in addition to the basic data structures such as strings, lists, sets, and hashes, you can also store advanced
data structures such as JSON for documents, Search and Query for secondary indexing, RedisGraph for graph data,
RedisTimeSeries for time-series data, and RedisBloom for probabilistic data (think leaderboards).

SQL versus NoSQL

44

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

This reduces impedance mismatch because your data is stored in one of 15 structures with little or no transformations.
You can also use a single connection (or connection pool) and client library to access your data. What you end up with is
a simplified architecture with purpose-built models that are blazing fast and simple to manage. For this reason, this e-book
will use Redis to explain several of the NoSQL data modeling patterns.

Most developers have at least a little understanding of SQL and how to model data in it. This is because SQL is widely
used and there are several incredible books and even full courses devoted to it. NoSQL is quickly growing and becoming
more popular. But given that when you’re talking about NoSQL you’re talking about more than just a document store, there
is a lot of ground to cover. That’s why when covering certain NoSQL data modeling patterns in this e-book, you will be
presented with what it might look like to model the data in SQL as well.

When you approach data modeling in SQL you are typically focused on relationships, as SQL is meant for set-based
operations on relational data. NoSQL doesn’t have this constraint and is more flexible in the way you model data.
However, this can lead to schemas that are overly complex. When considering NoSQL schema design, always think about
performance and try to keep things simple.

So to kick things off, let’s start by looking at something that is very near and dear to a SQL developer’s heart: relationships.

55

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Imagine that you are creating a retail app that sells electronics. Let’s use Picture 1 and Picture 2 as an example of the
UI for a standard retail e-commerce app. First, you’ll create a list view of all the electronics and then a detailed view
that shows all the details of each item. There is a 1-to-1 relationship between each item in the list view and the detailed
view (shown in Picture 2) of the item. The detailed view shows all the details such as multiple photos, description,
manufacturer, dimensions, weight, and so on.

Picture 1 Picture 2

Modeling 1-to1 Relationships

66

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

1-to-1 Relationships
using SQL
In a relational database, you
may create a table called
products where each row holds
just enough data to display the
information in the list view.
Then, you may create another
table called product_details
where each row holds the
rest of the details. You would
also need a product_images
table, where you store all of
the images for a product. You
can see the entity relationship
diagram in Picture 3.

Picture 3 depicts the entity
relationships between
products, product_details,
and product_images and
represents a normalized
data model with a single
denormalized field image in
the products table. The reason
for this is to avoid having to use
a SQL JOIN when selecting
the products for the list view.
Using this model, the SQL query
used to get the data needed
for the listview might resemble
Code Example 1.

Picture 3

Code Example 1

77

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

SELECT
	 p.id, p.name, p.image, p.price, pi.url

FROM
	 products p

1-to-1 Relationships
using Redis
In Redis, similar to a relational
database, you can create a
collection called products and
another called product_details.
But with JSON you can improve
this by simply embedding
product_images and
product_details directly into
the Products collection. Then,
when you query the Products
collection, specify which fields
you need based
on which view you are trying
to create.

This will allow you to easily keep
all the data in one place. This is
called the Embedded Pattern
and is one of the most common
patterns you will see in NoSQL
document databases like
JSON. Code Example 2 uses
Python and a client library
called Redis OM (an ORM for
Redis) to model Products and
ProductDetails. Note that
ProductDetails is embedded
into Products directly, so all
of the data for a product will
be stored within the same
document.

Code Example 2

88

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

class ProductDetail(EmbeddedJsonModel):
	 description: str
	 manufacturer: str
	 dimensions: str
	 weight: str
	 images: List[str]

class Product(JsonModel):
	 name: str = Field(index=True)
 image: str = Field(index=True)
 price: int = Field(index=True)
 details: Optional[ProductDetail]

Code Example 2 also shows
how you can index fields using
Redis OM and Search and
Query. Doing this turns Redis
into not only a document
store but also a search engine
since Search and Query
enables secondary indexing
and searching. When you
create models using Redis OM,
it will automatically manage
secondary indexes with Search
and Query on your behalf.

Using Redis OM we can write
a function to retrieve our
products list for the list view, as
shown in Code Example 3.

Code Example 3

99

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

async def get_product_list():
 results = await connections \
 .get_redis_connection() \
 .execute_command(
 f’FT.SEARCH {Product.Meta.index_name} * LIMIT 0 10 RETURN 3 name image
price’
)

 return Product.from_redis(results)

Notice that in Code Example 3
we are using the FT.SEARCH
(Search and Query) command,
which specifies the index
managed on our behalf by Redis
OM and returns three fields:
name, image, and price. While
the documents all have details
and images embedded, we
don’t want to display them in
the list view so we don’t need to
query them. When we want the
detailed view, we can query an
entire Product document. See
Code Example 4 for how to
query an entire document.

When using Redis, you can
use RedisInsight as a GUI tool
to visualize and interact with
the data in your database.
Picture 4 shows you what a
Products document looks like.

Code Example 4

1010

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

async def get_product_details(product_id: str):
	 return await Product.get(product_id)

Picture 4

Modeling 1-to-Many Relationships
Revisiting our electronics e-commerce store example, let’s talk about 1-to-many relationships. Let’s imagine in the
detailed view of a product you want to display a list of reviews for the product that show the reviewer name, rating,
publish_date, and comment. This is a 1-to-many relationship because one product can have multiple reviews and a
review can only relate to a single product.

1111

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

1-to-Many
Relationships
using SQL
In a relational database, you
would have a table called
products and another table
called product_reviews. Picture
5 shows the entity relationship
diagram for products and
product_reviews.

Picture 5

Using the entity relationship in Picture 5, you would need two SQL statements to get a product and its reviews. Code
Example 5 demonstrates what the SQL might look like. Your API would need to join the two queries together before
sending the data to the client.

Code Example 5

1212

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

SELECT
	 id, ‘name‘, ‘image‘, price
FROM
	 products
WHERE
	 id = 1;
SELECT
	 ‘name‘ , rating, publish_date, comment
FROM
	 product_reviews
WHERE
	 product_id = 1;

1-to-Many
Relationships
using Redis

In Redis, similar to a
relational database, you
could create two collections
called products, and
product_reviews exactly
like the entities above.
This strategy (having two
separate collections) works
well for documents that are
unbounded and can keep
growing.

For example, a product could
have hundreds of thousands
of reviews, but it might only
have a few related videos.
Reviews in this case are
unbounded, but videos are
bounded. If you have a 1-to-
many relationship where the
“many” is limited to just a few
documents, then you can
simply embed it directly in
the parent document.

Picture 6
Let’s say a product can have up to three videos. We
still have a 1-to-many relationship between products
and videos but since the number of videos is limited,
we can model this by embedding a list of video URLs,
shown in Picture 6, into our products collection.

Code Example 6 shows how you would embed a list of
videos directly into your products collection using JSON
and Redis OM for Python. When making a query, if you
don’t want to show the videos, you can leave them out of
your FT.SEARCH query (See Code Example 7).

Code Example 6

Code Example 7

1313

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

class Product(JsonModel):
	 name: str = Field(index=True)
 image: str = Field(index=True)
 price: int = Field(index=True)
 videos: Optional[List[str]]

async def get_products():
 results = await connections \
 .get_redis_connection() \
 .execute_command(
 f’FT.SEARCH {Product.Meta.index_name} * LIMIT 0 10 RETURN 3 name image
price’
)

 return Product.from_redis(results)

1-to-Many
Relationships
using Redis with
the Partial Embed
Pattern
You can also combine these
techniques if it makes sense
for the application you are
building. For example, let’s say
even though your product
reviews are unbounded, you
want to quickly show the recent
reviews all the time. Instead of
doing two different queries,
you can simply embed the
recent reviews directly into
the parent document and still
keep the rest of the reviews in a
different collection. This is called
the partial embed pattern.
Picture 7 shows the entity
relationship diagram for partially
embedding product_reviews.

Code Example 8 shows the
data model for products with
embedded recent reviews.

Picture 7

Code Example 8

1414

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

class ProductDetail(JsonModel):
	 product_id: str = Field(index=True)
 reviewer: str
 rating: str
 published_date: datetime.date
	 comment: str

class Product(JsonModel):
	 name: str = Field(index=True)
 image: str = Field(index=True)
 price: int = Field(index=True)
 videos: Optional[List[str]]
	 recent_reviews: Optional[List[ProductReview]]

Code Example 9Looking at Code Example 9
you can see five functions. The
first function shows how to get
a list of products with the name,
image, and price fields. This is
useful for the listview because
you don’t need to show videos
or recent reviews in your list of
products. For the detailed view,
you do want to show product
videos and recent reviews. For
that, you can simply use the
get_product function above.

This makes sense and enables
your UI to provide a glimpse
of the reviews for a product.
Then, you might have a “See all
reviews” button in your UI which
triggers a call to get the rest
of the reviews. The get_reviews
function in Code Example 9
demonstrates how you can
offset before querying
for reviews.

1515

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

async def get_products():
 results = await connections \
 .get_redis_connection() \
 .execute_command(
 f’FT.SEARCH {Product.Meta.index_name} * LIMIT 0 10 RETURN 3 name image
price’
)

 return Product.from_redis(results)

async def get_products(product_id: str):
 return await Product.get (product_id)

async def get_reviews(product_id: str):
 return await = ProductReview.find (ProductReview.product_id == product_id)
	 query.offset = 2
	 return await query.all ()

async def add_review(review: ProductReview):
 product = await Product.get (review.product_id)
	 review.recent_reviews.insert(0, review)

	 if (len(product.recent_reviews) > 2):
 product.recent_reviews.pop()

 await review.save()
 await product.save()

The assumption in the code is
that we only store the two most
recent reviews embedded in
each product document. Finally,
add_review shows how you
would insert a new review into
the product document. You
would simultaneously insert
it into your product_reviews
collection and pop off the
last review in your embedded
recent_reviews if necessary.

Picture 8 shows what the
data looks like in RedisInsight.
You can see one product and
five product_reviews in the
database, and also see that
there are two recent_reviews
embedded within the product,
and all videos embedded.

1616

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Picture 8

Modeling Many-to-Many
Relationships
Many-to-Many relationships are very common and can be modeled in several ways with NoSQL databases. Here are
the two most common data modeling patterns for many-to-many relationships.

1717

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Pattern 1:
Many-to-Many
Relationship with
Bounded Sides
Imagine you are creating an
app for an online school that
has courses and instructors.
There is a many-to-many
relationship between courses
and instructors, but the list
of instructors who teach a
course is bounded on both
sides, meaning there will be a
limited number of instructors
teaching a course and a limited
number of courses taught by an
instructor.

In a relational database, you
might have a table called
courses and another table
called instructors. Then you
would have a junction table
called courses_instructors that
would store the relationship
between courses and
instructors. This can be seen in
Picture 9.

Picture 9

Picture 10

1818

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

In NoSQL, you can simplify
this by embedding a list
of instructor keys in each
course document and a list of
course keys in each instructor
document. This can be seen
in Picture 10 and is known as
two-way embedding. Let’s see
what this looks like in code.

Code Example 10

Code Example 10 uses Redis OM for Python to model
Courses with a name field and an instructors field
that is a list of strings representing the unique keys for
instructors. There is also an Instructors collection with
a name field and a courses field that is a list of strings
representing the unique keys for the courses. Note the
code, “Field(index=True)” is used to enable searching for
instructors and courses using Search and Query.

Redis OM will automatically create an index for the
specified keys. The “get_courses_with_instructor” function
takes in an instructor key and returns all of the courses
that contain that instructor. The “get_instructors_with_
course” does the opposite, returning instructors for a
given course. The two-way embedding pattern works
well when both sides of the relationship are bounded. But
what about when one side is unbounded?

1919

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

class Product(JsonModel):
	 name: str
 instructors: Optional[List[str]] = Field(index=True)

class Instructor(JsonModel):
 name: str = Field(index=True)
 courses: Optional[List[str]] = Field(index=True)

async def get_courses_with_instructor(instructor_pk: str):
 return await Course.find(Course.instructors << instructor_pk).all()

async def get_instructors_with_course(course_pk: str):
 return await Instructor.find(Instrusctor.courses << course_pk).all()

Pattern 2:
Many-to-Many
Relationship with
One Unbounded
Side
Now consider the relationship
between courses and students.
Let’s assume this is an online
school, and there could be any
number of students enrolled in
a course. This is an unbounded
many-to-many relationship
on the course side. However,
the student side is bounded
because a student will only
enroll in a limited number
of courses.

In a relational database, you
would still model this with a
junction table. However, in
NoSQL, it makes sense to
model it using an embedded
list on the bounded side of the
relationship. So you would store
a list of course keys in each
student document as shown
in Picture 11.

Picture 11

2020

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Code Example 11 shows Courses with the name and
instructor fields. Since the number of students in a
course is unbounded, you don’t need to store a list of
students in each course document. Instead, Students
has a name field and a courses field that is a list of strings
representing the unique keys for the courses in which a
student is enrolled. You also see two functions, one for
finding students in a course and the other for finding
courses that have a specific student enrolled. This is how
you model many-to-many relationships when one side of
the relationship is unbounded and the other is bounded.

To recap, data modeling for many-to-many relationships
can be represented by embedding one or both sides
of the relationship depending upon whether a side is
bounded or unbounded. If both sides are bounded, then
you can embed the relationship on both sides. If only
one side is bounded, then you should avoid embedding
the unbounded side. You should also favor embedding
references unless you have information that is primarily
static and won’t change over time.

Code Example 11

2121

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

class Course(JsonModel):
	 name: str
 instructors: Optional[List[str]] = Field(index=True)

class Student(JsonModel):
 name: str = Field(index=True)
 courses: Optional[List[str]] = Field(index=True)

async def get_students_in_course(course_pk: str):
 return await Student.find(Student.courses << course_pk).all()

async def get_courses_for_student(student_pk: str):
 student = await Student.get(student_pk)
	 return await Course.find(Course.pk << student.courses).all()

The Aggregate Pattern
Let’s revisit the e-commerce site example. Every e-commerce site needs to keep a record of product reviews, and
also needs to show average ratings for each product on the page every time a customer looks at the page (shown in
Picture 12). This means, that for every page visit, the server needs to calculate the average rating for every product.
This could cause unnecessary overhead on the server and the database.

Picture 12

2222

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

This is called the Aggregate
Pattern, also known as the
Computed Pattern. In our
e-commerce example, you can
store the number of reviews
as well as the sum of ratings
on each product’s JSON
document. This can be seen in
Picture 13.

Picture 13 When a new review is added you can increment the
count and add the new rating to the existing ratings
sum. Then, when a customer searches for a product,
you read the sum and the count of ratings and calculate
the average on the front end by dividing the sum by the
count. This way every time a customer visits the page,
the server and the database just need to return the pre-
calculated values, resulting in improved performance.
Let’s look at a before and after using the Aggregate
Pattern in code.

2323

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Without the
Aggregate Pattern
Code Example 12 shows how
you would model Products
and ProductReviews using
Redis OM for Node.js. Redis
OM supports not only Python
and Node.js but also .NET and
Spring. The code shown in
Code Example 12 is not using
the Aggregate   Pattern, so some
things are straightforward, and
others are more difficult.

For example, to add a new
review you simply create it
and save it to Redis. However,
getting a list of products is a
little bit more complicated but
can still be done with Redis
OM using the FT.AGGREGATE
command. Search and Query
provides this command,
and it allows you to perform
aggregate queries easily.
In Code Example 12 the
FT.AGGREGATE command is
used to group product reviews
by productId and perform
a reduce to calculate the
average rating and count of
reviews.

Code Example 12

class Product extends Entity {}
class ProductReview extends Entity {}

const productSchema = new Schema(Product, {
 name: { type: ‘string’ },
});
const productReviewSchema = new Schema(ProductReview, {
 productId: { type: ‘string’ },
 author: { type: ‘string’ },
 rating: { type: ‘number’ },
});

async function addReview(productId, author, rating) {
 const client = await getClient();
 const productReviewRepo = client.fetchRepository(productReviewSchema);
 await productReviewRepo.createAndSave({
 productId,
 author,
 rating,
 });
}

2424

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Code Example 12 cont’dThen, after the command
is run and the reviews are
returned, the average rating
and number of reviews are
extracted from the result
and mapped onto the list of
products before returning to
the client.

The problem here is that while
Redis is incredibly fast, and for
many applications will be able
to handle this load relatively
quickly, it is suboptimal
especially for applications with
a lot of user traffic. The code
in Code Example 12 in the
“getProducts” function would
have to be run every time a
customer visits the site. This
can lead to needless overhead.
Instead, let’s look at a better
approach using the Aggregate
Pattern.

2525

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

async function getProducts() {
 const client = await getClient();
 const productRepo = client.fetchRepository(productSchema);
 const productEntities = await productRepo.search().return.all();
 const results = await client.execute(
 ‘FT.AGGREGATE ProductReview:index * GROUPBY 1 @productId REDUCE AVG 1 @
rating REDUCE COUNT 0’.split(
 /\s+/
)
);

	 const products = {};
 for (let result of results.slice(1)) {
 const [, productId, , avgRating, , numReviews] = result;
 products[productId] = {
 avgRating: Number(avgRating),
 numReviews: Number(numReviews),
 };
 }

 return productEntities.map((entity) => {
 return {
 ...entity.entityData,
 ...products[entity.entityId],
 };
 });
}

With the
Aggregate Pattern
Code Example 13 is very
similar to Code Example
12, only it takes advantage
of the Aggregate Pattern
and has “numReviews”
and “sumRatings” fields on
Products. The “addReview”
function now requires you
to increment “numReviews”
and add the rating to the
“sumRatings” field.

Code Example 13

2626

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

class Product extends Entity {}
class ProductReview extends Entity {}

const productSchema = new Schema(Product, {
 name: { type: ‘string’ },
 numReviews: { type: ‘number’ },
 sumRatings: { type: ‘number’ },
});
const productReviewSchema = new Schema(ProductReview, {
 productId: { type: ‘string’ },
 author: { type: ‘string’ },
 rating: { type: ‘number’ },
});

async function addReview(productId, author, rating) {
 const client = await getClient();
 const productRepo = client.fetchRepository(productSchema);
 const productReviewRepo = client.fetchRepository(productReviewSchema);
 const productEntity = await productRepo.fetch(productId);

 productEntity.entityData.numReviews += 1;
 productEntity.entityData.sumRatings += rating;

 return Promise.all([
 productRepo.save(productEntity),
 productReviewRepo.createAndSave({
 productId,
 author,
 rating,

Code Example 13 cont’dHowever, the “getProducts”
function is much simpler.
Remember that a typical
e-commerce application will
typically have a much larger
number of reads than writes,
so you want to optimize your
data for reads. When building
read-heavy applications,
consider using the Aggregate
Pattern to reduce the amount
of computation necessary
at read time for aggregate
information.

2727

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

 }),
]);
}

async function getProducts() {
 const client = await getClient();
 const productRepo = client.fetchRepository(productSchema);

 return productRepo.search().return.all();
}

The Polymorphic Pattern
Polymorphism is used when you have things that have some similarities and also some differences. Consider a
catalog of products where each product has a name, brand, sku, and model but some products of a certain type
might contain size and color while others might not.

For example, a game console and a pair of earbuds might have similar fields such as the product name, brand, model
number, sku, and reviews. However the game console has some unique properties such as storage type, number of
HDMI ports, etc. The pair of earbuds also has unique fields such as battery life, connection type, fit, etc.

2828

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

2929

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Picture 14 shows the entity
relationship diagram you might
use in SQL. In SQL you might
store some of the shared fields
in a “products” table, and then
have separate tables to store
specifics about the different
types of products. Now to get all
the products you need to join all
these tables.

Picture 14

An example query might look
like Code Example 14. This can
get unwieldy as you add many
different types of products to
your catalog.

You could also choose to
store any possible field in the
products table, but this can
also get unwieldy, could lead
to issues if your database limits
the number of columns you can
store, and requires you to have a
ton of nullable fields in each row.

Code Example 14

3030

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

SELECT
 p.id, p.name, p.brand, p.sku, p.model,
 a.storage_type,
 gc.storage_type, gc.hdmi_ports, gc.gpu,
 e.storage_type, e.usb_ports, e.hdmi_ports,
 ph.storage_type, ph.ports, ph.battery
FROM
 products p
INNER JOIN
 appliances a
ON a.product_id = p.id
INNER JOIN
 game_consoles gc
ON gc.product_id = p.id
INNER JOIN
 electronics e
ON e.product_id = p.id
INNER JOIN
 phones p
ON ph.product_id = p.id
WHERE
 p.id = 1;

In Redis, because you get
a flexible schema, you can
simply store all these in a single
collection without having to
worry about having a ton of null
fields. Further, to distinguish
between different product
types, you can have a “type”
field that groups them together.
For example, in our case, we
can have type = “game console”
and type = “earbuds”.

Let’s look at what this looks like
in code.

Code Example 15 shows how
using the Polymorphic Pattern
in Redis makes it really easy
to work with products. The
“getProducts” function can get
all products by looking at a
single collection. If you need to
get products of a certain type,
like game consoles, you can
modify your where clause to
search by type.

Code Example 15

class Product extends Entity {}

const productSchema = new Schema(Product, {
 type: { type: ‘string’ },
 name: { type: ‘string’ },
 brand: { type: ‘string’ },
 sku: { type: ‘string’ },
 model: { type: ‘string’ },
 batteryLife: { type: ‘string’ },
 connectionType: { type: ‘string’ },
 fit: { type: ‘string’ },
 usbPorts: { type: ‘number’ },
 hdmiPorts: { type: ‘number’ },
 storageType: { type: ‘string’ },
});

async function getProducts() {
 const client = await getClient();
 const productRepo = client.fetchRepository(productSchema);

 return productRepo.search().return.all();
}

async function getProductByType(type) {
 const client = await getClient();
 const productRepo = client.fetchRepository(productSchema);

 return productRepo.search().where(‘type’).equals(type).return.all();
}

3131

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Picture 15 shows what the data
might look like in RedisInsight.
Something to note is that
given Redis allows for a flexible
schema you only see the
common fields as well as fields
specific to a product type. In
Picture 15 you see fields that
relate to the earbuds product
type, but not fields for any
other type.

When building applications,
think about how to best design
your data schema using
fewer collections, and take
advantage of the Polymorphic
Pattern to combine similar
types of data.

Picture 15

3232

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

The Bucket Pattern
Imagine you are building an application that will take temperature measurements for monitoring purposes. You want
to use Redis for this because it is fast, and you will need to access the data frequently. You may think to store each
measurement embedded in a JSON document with the timestamp and temperature reading (shown in Picture 16).
However, while this approach seems reasonable, it can cause issues as your application scales to have tons of these
measurements.

Picture 16

3333

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Working with
Time-series Data
in Redis
A better way to store this
is to use the time-series
capabilities of Redis. With
RedisTimeSeries you can store
your measurements in a time-
series data structure. In this
case you might also want to
have easy access to the average
temperature over a period of
time. Let’s see what this looks
like in code:

Using Code Example 16 as a
guide, you need to first create a
time series before you can add
measurements to it. However,
you want to make sure the time
series doesn’t already exist
before you create it using the
EXISTS command in Redis. To
create a new time series, you
need to use the TS.CREATE
command.

Code Example 16

async function createTimeSeries() {
 const client = await getClient();
 const exists = await client.execute(‘EXISTS temperature:raw’.split(‘ ‘));

 if (exists === 1) {
 return;
 }

 const commands = [
 ‘TS.CREATE temperature:raw DUPLICATE_POLICY LAST’,
];

 for (let command of commands) {
 await client.execute(command.split(‘ ‘));
 }
}

3434

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Code Example 16 cont’d

async function add(values) {
 const client = await getClient();
 const chunkSize = 10000;

 for (let i = 0; i < values.length; i += chunkSize) {
 const chunk = values.slice(i, i + chunkSize);
 const series = chunk.reduce((arr, value) => {
 return arr.concat([
 ‘temperature:raw’,
 new Date(value.date).getTime(),
 value.temp,
]);
 }, []);

 // TS.MADD temperature:raw timestamp temp temperature:raw timestamp temp ...
 await client.execute([‘TS.MADD’, ...series]);
 }
}

We are calling our time series
“temperature:raw” because
it will be storing all of the raw
temperature measurements
from our data. We are also
specifying a DUPLICATE_POLICY
of “last”, meaning that if we try
to add multiple samples with the
same timestamp it will always
keep the newest reported value.

3535

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

TS.REVRANGE temperature:raw 0 + COUNT 14400

You will also see an add function
here that takes in an array of
temperature readings with the
timestamp and temperature
value. The sample data has a
year’s worth of temperature
readings every 6 seconds,
totaling about 5.3 million
samples. For this reason, we are
splitting the data into chunks
of 10 thousand samples. We
are then using the TS.MADD
command to store each batch
of 10 thousand samples.

You can use TS.MADD to
append new values to one
or more time series. In this
case, I am appending to the
temperature:raw time series.
If you want to visualize a
time series, RedisInsight is a
great tool. You can use the
workbench and run a TS.RANGE
or TS.REVRANGE command
to get a graph of your time-
series data. For example, the
following command would give
us the prior day’s temperature
readings, and Picture 17
shows the visualization from
RedisInsight.

Picture 17

3636

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Aggregating
Time-series Data
with Redis

While it is nice to get a view of
all the data, what is also nice is
to be able to see the average
temperature over a period of
time. You can do this using
the TS.RANGE command and
specifying an AGGREGATE
command of twa, for time-
weighted average, as well as a
bucket duration. Let’s specify a
bucket duration of the number
of milliseconds in a month so
we can see the average monthly
temperature in our time series.

You can use the TS.RANGE
command to get the average
temperature over a period of
time. However, as you store
more measurements the time it
takes to calculate the average
will increase. There is a better
way to handle this using the
Bucket pattern.

With the Bucket Pattern and Redis, you can automatically aggregate your data as you go along. Say, for example,
you want to keep track of the average hourly temperature reading. Redis can do this automatically for you with the
TS.CREATERULE command. Let’s see what this looks like in code.

Code Example 17 shows two new time series added, temperature:daily and temperature:monthly. It also shows two rules
created using TS.CREATERULE to take the time-weighted average temperatures as they are added to temperature:raw
and store them in the respective daily and monthly time series.

3737

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Code Example 17

async function createTimeSeries() {
 const client = await getClient();
 const exists = await client.execute(‘EXISTS temperature:raw’.split(‘ ‘));

 if (exists === 1) {
 return;
 }

 const commands = [
 ‘TS.CREATE temperature:raw DUPLICATE_POLICY LAST’,
 ‘TS.CREATE temperature:daily DUPLICATE_POLICY LAST’,
 ‘TS.CREATE temperature:monthly DUPLICATE_POLICY LAST’,
 ‘TS.CREATERULE temperature:raw temperature:daily AGGREGATION twa 86400000’,
 ‘TS.CREATERULE temperature:raw temperature:monthly AGGREGATION twa
2629800000’,
];

 for (let command of commands) {
 await client.execute(command.split(‘ ‘));
 }
}

The TS.CREATERULE command takes in a sourceKey, destinationKey, aggregator function, and bucketDuration. The
sourceKey is the key to the source time series where you are storing your raw data. The destinationKey is where you want
to store the new, bucketed time series. The aggregator is the function you want to use for your buckets. In our case, we
will use twa to store the time-weighted average. Finally, the bucketDuration is the timespan in milliseconds for your buck-
ets.

Note that you should never explicitly add to the bucketed time series as it will be done automatically for you. Also, the rule
does not retroactively apply to an existing time series. Only new samples that are added to the source time series will be
aggregated. So if you look at the differences between Code Example 16 and Code Example 17 you will see that we only
needed to add the two new time-series keys and the two rules. Redis takes care of the rest!

Now if we want to get the average monthly temperature we can simply query the monthly time series with the following
TS.RANGE command.

Note that you don’t have to specify any aggregator function because it’s already done for you using TS.CREATERULE. That
not only makes the command more readable than the aggregate command we had to run previously, but it also runs
much faster.

While Redis is incredibly fast when performing aggregate queries, using the bucket pattern to keep track of aggregate
values as you go is much faster.

3838

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

TS.RANGE temperature:monthly 0

The Revision Pattern	
Imagine you’re an editor for a digital publication. You work with several team members to write and edit each post
before it gets published. You need to keep track of content revisions as well as who made those revisions.

As seen in Picture 18, in SQL you might store all posts in a table and have the revisions in a separate table. Then,
when you want to view the revisions for a specific post you need to query the latest version from the posts table and
join all the revisions from the revisions table that match that post.

Picture 18

3939

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

With Redis, you can store
a post and its revisions in
a single document. This
simplifies your queries and
lets you organize your content
more logically. This is called
the Revision Pattern. Let’s see
what this looks like in code.

Code Example 18 shows
how you would model Posts
and embedded Revisions
using Redis OM for Python.
Both models share attributes
such as title, body, author,
last_saved_by, created_at, and
updated_at. Posts have an
additional attribute which is
the list of revisions.

Code Example 18

class Revision(EmbeddedJsonModel):
 title: str = Field(index=True)
 body: str = Field(index=True)
 author: str = Field(index=True)
 last_saved_by: str = Field(index=True)
 created_at: datetime.date = Field(index=True)
 updated_at: datetime.date = Field(index=True)

class Post(JsonModel):
 title: str = Field(index=True)
 body: str = Field(index=True)
 author: str = Field(index=True)
 last_saved_by: Optional[str] = Field(index=True)
 created_at: Optional[datetime.date] = Field(index=True)
 updated_at: datetime.date = Field(index=True)
 revisions: Optional[List[Revision]]

4040

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Code Example 19

async def create_post(**args):
 dt = datetime.now().isoformat()
 post = Post(
 title=args[“title”],
 body=args[“body”],
 author=args[“author”],
 last_saved_by=args[“last_saved_by”],
 created_at=dt,
 updated_at=dt,
 revisions=[]
)

 return await post.save()

async def update_post(id: str, **args):
 post = await Post.get(id)
 revision = Revision(
 title=post.title,
 body=post.body,
 author=post.author,
 last_saved_by=post.last_saved_by,
 created_at=post.created_at,
 updated_at=post.updated_at)

Code Example 19 shows the
standard CRUD operations
for a post. To create a new
post we simply take in all the
post attributes and save them
to Redis using Redis OM. To
update a post, we first get
the post from Redis, create a
new revision for it, insert it at
the beginning of the post’s
revisions list, update the post
with the new attributes, then
save the post.

4141

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

When you get a list of posts,
you don’t always want the
revisions for each post. The
FT.SEARCH command lets you
search Redis using an index
and also specify the fields to
return. Redis OM automatically
creates the Post index for
you, and then you can use it
to run custom searches if you
need to. In “get_posts”, we are
querying all posts, denoted
by the asterisk, and returning
5 fields: title, body, author,
created_at, and updated_at.
Now let’s see what this looks
like in RedisInsight.

Code Example 19 cont’d

 post.revisions.insert(0, revision)
 post.title = args.get(“title”, post.title)
 post.body = args.get(“body”, post.body)
 post.author = args.get(“author”, post.author)
 post.last_saved_by = args.get(“last_saved_by”, post.last_saved_by)
 post.updated_at = datetime.now().isoformat()

 return await post.save()

async def get_posts():
 results = await connections \
 .get_redis_connection() \
 .execute_command(
 f’FT.SEARCH {Post.Meta.index_name} * LIMIT 0 10 RETURN 5 title body
author created_at updated_at’
)

 return Post.from_redis(results)

async def get_post(id: str):
 return await Post.get(id)

4242

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Picture 19Using Picture 19, in
RedisInsight you can see there
are two posts in the database.
For the selected post there are
some revisions. Note the title,
body, author, and last_saved_
by fields are different in the
main post than in the revisions.

While publishing is a very
common industry that uses
the Revision Pattern it is also
applicable to industries where
you need an audit trail of all
document changes such as
law, finance, healthcare, and
insurance.

4343

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

The Tree and Graph Pattern
When working with NoSQL document databases it is generally recommended to minimize the number of JOINs
you need to build your data model. Even in SQL, JOINs can cause overhead and slow down data retrieval. However,
sometimes your data requirements are such that you cannot avoid JOINs. We’ve already covered various patterns for
modeling relatively simple relationships, including when to embed and when to keep things separate. One thing we
didn’t talk about is more complex relationships such as graphs or trees.

For example, imagine you are building an enterprise resource planning (ERP) system. One of the most important parts
of the system is the org chart. At the very least, you need to be able to show details about each employee, where
they are located, and who they report to (or who reports to them). The most logical way to store this data is in a tree.
Let’s look at how you might do this in traditional SQL as well as NoSQL with Redis using the Tree and Graph Pattern.

Storing trees in SQL is straightforward, as SQL is designed specifically for relationship modeling. To model your org
chart, you might have two tables (shown in Picture 20): employees and locations.

Picture 20

Using Picture 20 let’s look at two potential SQL queries you might want to make. You need one query for getting
employees who work at a specific location and another query for getting employees who work for a specific
manager.

4444

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Code Example 20 shows
two relatively simple queries
for getting employees with
a specific manager or at a
specific location. This works
well, but what if you want to
go one or more levels deeper
with the manager query. For
example, if you want to find
employees who have two
degrees of separation from
someone. This becomes more
complicated to accomplish
with SQL and requires you
to add additional JOINs.
Depending on the complexity
of your query and how many
employees you have in your
database, it can become
prohibitively slow to use SQL to
get the information you need.

4545

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Code Example 20

Get employees with a specific manager
SELECT
 e.id, e.name, e.title
FROM
 employees e
INNER JOIN
 employees e2
ON e2.reportsto_id = e.id
WHERE
 e.id = 1;

Get employees who work at a specific location
SELECT
 e.id, e.name, e.title
FROM
 employees e
INNER JOIN
 locations l
ON l.id = e.location_id
WHERE
 l.id = 1;

Redis comes with built-in
graph capabilities, which
makes working with complex
relationships more intuitive and
faster. Under the hood, Redis
uses the Cypher language to
allow you to work with trees
and graphs. Let’s take the same
example from Picture 20 and
see how you would use Redis to
accomplish the same thing.

Code Example 21 is the query
you would perform on Redis
to get results that match
those from Code Example
20, and Picture 21 shows the
visualization you get when
you run the first query in the
RedisInsight Workbench.

Code Example 21

Get employees with a specific manager
GRAPH.QUERY Org “MATCH (e:Employee)-[:REPORTS_TO]->(m:Employee { name: ‘Doug’})
RETURN e,m”

Get employees who work at a specific location
GRAPH.QUERY Org “MATCH (e:Employee)-[:WORKS_AT]->(l:Location { name: ‘Seattle’})
RETURN e,l”

Picture 21

4646

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Code Example 22

Get employees two degrees separated from a specific manager
GRAPH.QUERY Org “MATCH (e:Employee)-[:REPORTS_TO*2]->(m:Employee { name: ‘Doug’})
RETURN e,m”

Code Example 22 shows how,
with a small addition of “*2”,
you can get employees with
two degrees of separation from
Doug.

The built-in graph capabilities
of Redis allow you to use the
Tree and Graph Pattern to
model complex relationships
without having to worry about
the complexity of SQL queries.
While this pattern is useful for
HR systems, it is also seen in
Content Management Systems
(CMSs), product catalogs,
social networks, and more.

4747

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

The Schema Version Pattern
In the past, you’ve probably built an app, designed your data model and everything seemed perfect. Then something
comes up that prompts a change to your data model. You need to determine whether you should make a breaking
change and rewrite all your application code to use the new data model at the same time.

For example, when your app started maybe you were storing one email address per user but now you need to store
multiple email addresses. You could add additional columns such as “email2”, “email3”, etc. However, a better way is
to use a list of email addresses.

While the most future-proof way is to use an embedded list, the problem is all your existing users are stored with
email address fields directly in their document rather than in the “email addresses” list. In addition, all of your existing
code is using the email address fields on a user, not from within the email address list. So what do you do? This is
where you can use the Schema Version pattern to your advantage.

The Schema Version pattern is a way of assigning a version to your data model. This is usually done at the document
level, but you may also choose to version all of your data as part of an API version. It is recommended that you
always assign a version to your documents so that you can change them in the future without having to worry about
immediately migrating all of your data and code. If you’re using Redis your schema is flexible, and you can make
changes to your existing schema without any downtime.

If you aren’t already using the Schema Version Pattern the good news is you can start today without making any
significant changes to your application logic. Let’s dive into some code to see how you might introduce the Schema
Version Pattern into an existing system.

4848

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

In Code Example 23 we are
using Redis OM for Node.js and
defining a User schema with
name and email. To create a
new user we need to save the
user data to Redis, then return
the new user. To get a user we
simply fetch it from Redis using
its unique ID. Finally, to update
a user we fetch it by ID and
then update the fields. In a full
production app, you might do
a lot more than this, but this is
a simple example of how you
might start writing an app to
create, read, and update users.

Code Example 23

class User extends Entity {}

const userSchema = new Schema(User, {
 name: { type: ‘string’ },
 email: { type: ‘string’ },
});

export async function create(data) {
 const client = await getClient();
 const repo = client.fetchRepository(userSchema);
 const user = repo.createEntity(data);

 await repo.save(user);

 return user.toJSON();
}

export async function read(id) {
 const client = await getClient();
 const repo = client.fetchRepository(userSchema);
 const user = await repo.fetch(id);

 return user.toJSON();
}

4949

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

This is working well for now, but what happens when we
need to change users to have a list of email addresses?
We need to change the existing schema and write some
code to incrementally migrate old users to the new
schema.

The best way to do this is to create a translation function
that you run whenever a new user is created or an old
user is updated. The reason you want to do this is twofold.
First, you only want to migrate a user document one
time, so you don’t want to translate it during read time.
Second, you want to allow your existing applications to
continue to use older schemas. Let’s see how we might
incrementally migrate old documents to use the new
schema while supporting existing application logic.

Code Example 23 cont’d

export async function update(id, data) {
 const client = await getClient();
 const repo = client.fetchRepository(userSchema);
 const user = await repo.fetch(id);

 user.name = data.name;
 user.email = data.email;

 await repo.save(user);

 return user.toJSON();

5050

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Code Example 24

class User extends Entity {}

const userSchema = new Schema(User, {
 schema: { type: ‘string’ },
 name: { type: ‘string’ },
 email: { type: ‘string’ },
 contact: { type: ‘string’ },
 emails: { type: ‘string[]’ },
});

function translate(data, schema = ‘1’) {
 // Ignore data if using the old schema
 if (schema === ‘1’) {
 return data;
 }

 // Ignore data if already using schema ‘2’
 if (schema === ‘2’ && data.schema === ‘2’) {
 return data;
 }

 // Migrate old data to new schema
 data.schema = schema;
 data.emails = [data.email];
 data.contact = data.email;
 data.email = null;

 return data;
}

Using Code Example 24,
this time we’re defining our
User schema with additional
fields for schema, contact,
and an emails list. We want to
eventually rename the email
field to contact so it is more
straightforward. However, we
don’t want to remove the email
field yet because we still want
to support legacy code.

The “translate” function will
translate data from the old
schema to the new schema. By
default, we will assume anyone
using the function is still using
the old schema. This is safe as
you don’t want to automatically
assume everyone wants to
start using the new schema. In
the translate function, we do
nothing if the old schema is in
use. We also do nothing if the
schema of the incoming data
matches. If neither of those
conditions is true, we migrate
the old schema to the new
format and return it.

5151

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Code Example 24 cont’d

 export async function update(id, data, schema = ‘1’) {
 const client = await getClient();
 const repo = client.fetchRepository(userSchema);
 const user = await repo.fetch(id);

 data = translate(data, schema);

 if (schema === ‘1’) {
 user.schema = schema;
 user.name = data.name;
 user.email = data.email;
 } else {
 user.schema = data.schema;
 user.name = data.name;
 user.email = data.email;
 user.contact = data.contact;
 user.emails = data.emails;
 }

 await repo.save(user);

 return user.toJSON();

We also need to rewrite the
create function to support
both schemas. Once again we
use the old schema by default.
Then, we call to translate the
data, save it to Redis, and
return the JSON. Updating an
existing user can be a little bit
tricky. First we fetch the user
from Redis, then make a call
to translate the incoming data.
Finally, we update the user
fields according to the schema
in use.

While this might be a contrived
example, the principles
still apply in a real-world
application. You should always
use the Schema Version
pattern to aid in incrementally
migrating your data as you
require changes to your data
model.

5252

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Summarizing The Patterns
That was a lot of information to take in! Let’s briefly look back at all the patterns we learned throughout this e-book,
and also consider the use-cases for each one.

5353

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

The Embedded Pattern
The Embedded Pattern is used in NoSQL document
databases, such as Redis, to allow you to keep all
information relevant to a specific data type within
the same document. This is useful in a wide range of
applications. Almost every application you build can and
should take advantage of The Embedded Pattern.

The Aggregate Pattern
The Aggregate Pattern is used to store attributes of
a larger embedded (or separate) collection within a
document. We used it to store the number of reviews and
sum of ratings in our product documents, thus making
it easier to calculate the average rating for products in
a listview. However, this pattern is useful in IoT, real-time
analytics, and other types of catalogs as well.

The Partial Embed Pattern
The Partial Embed Pattern is where you embed a subset
of a larger collection within a document. This is useful in
e-commerce applications to store product reviews. It is
also useful in publishing and social media applications
to show top comments. There are many use-cases for
the partial embed pattern, the important thing is for you
to recognize when it might be useful based on how you
have to present information to your users.

The Polymorphic Pattern
The Polymorphic Pattern applies when there are several
different variations of similar data, with more similarities
than differences. It’s useful for when you really want data
kept in a single collection for viewing purposes. We used
the example of a product catalog, where products have
some shared properties and other unique properties
based on their type.

However, we wanted to be able to query and show
all products as easily as possible. The Polymorphic
Pattern lets us store all of the permutations of products
in a single product collection. This pattern is also very
useful in content management systems (CMS), learning
management systems (LMS), and customer relationship
management systems (CRM).

5454

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

The Bucket Pattern
You might also call this pattern the time-series pattern.
The Bucket Pattern is where you have time-series data
and you want to store it in aggregate “buckets” based on
time periods. This is useful when managing streaming
data such as sensor readings, real-time analytics, and IoT
applications. Redis makes this pattern incredibly easy with
its built-in time-series bucketing capabilities.

The Tree and Graph Pattern
The Tree and Graph Pattern is useful when you need
to model complex relationships and you can’t take
advantage of the Embedded Pattern. This typically means
your data is hierarchical and needs to be accessed and
changed frequently. The key advantage NoSQL has over
SQL here is avoiding multiple JOINs for accessing several
levels of a tree. This pattern can be seen in ERPs, CMSs,
product catalogs, and social networks.

The Revision Pattern
Use the Revision Pattern when you need to maintain
previous versions of a document. We used a CMS
example, but this pattern is useful in the legal, financial,
healthcare, and insurance industries. NoSQL document
databases like Redis make it easy to apply this pattern
because you can embed revisions with the latest version
all within the same document.

The Schema Version Pattern
Last, but certainly not least, the Schema Version Pattern
applies to every application you ever build using NoSQL.
It is incredibly useful for helping you improve your
schema over time. Redis and other NoSQL databases are
sometimes referred to as “schemaless.” While this is true,
in reality, a schema is very important in every database.

You also need to be able to change your data model and
let applications that use your data upgrade gracefully. The
Schema Version Pattern enables you to let applications
upgrade when they want, and understand a document
based on its schema version.

5555

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

Conclusion
I hope you enjoyed this e-book. Let it serve as a reference for you as you go out and build amazing applications
using NoSQL and Redis! Remember, even though all of the examples in this e-book use Redis, the same patterns and
principles apply to other NoSQL databases.

Also, keep in mind that all of the patterns mentioned can be used together in your application. When you are
approaching building an application, have these patterns in the back of your mind, and figure out which pattern applies
best to the problem you are trying to solve. You have been given the tools and knowledge needed to build applications
using NoSQL. Now you just need to get started!

5656

Redis E-Book / 8 Data Modeling Patterns in Redis © 2022 Redis

