
SOLUTION BRIEF

© 2022 Redis

Modernize Your MySQL Database
With Redis Enterprise
Enable real-time performance at scale
on MySQL with Redis Enterprise

2

Redis Enterprise brings the
performance of your MySQL
applications up to the standard
required to power today’s user
expectations. As an in-memory
real-time data platform,
Redis Enterprise can be
used alongside MySQL as an
enterprise cache or database
to make MySQL applications
faster, more efficient, and
more scalable.

Why MySQL with Redis
Enterprise
MySQL is an open-source relational database
designed around transactional data, not performance.
It was also designed with rows and columns - not
the way we access and visualize data as objects,
documents, or time series. Using MySQL for real-time,
modern applications that it was not designed for
creates extreme database challenges.

Challenges with MySQL

• Delivering rapid responses: MySQL, fast for a
relational database, at scale is saddled with a
relatively high overhead and cannot deliver optimal
speed. MySQL is unable to provide the real-time
responses that are required for new applications
that involve such things as session management,
fraud detection, or real-time claims processing.

• Struggling with high-velocity data: When thousands
of updates per second are written to a single
database row (for example, flash online sales), it is
crucial to maintain exact values every second. MySQL
is designed around full transactional semantics
with support for long transactions - transactions
that will never be complete unless each operation
within the group is successful. Long transactions are
not suitable for high velocity data where the exact
value needs to be constantly updated and instantly
available. MySQL doesn’t do well with data that is too
big, moves too fast, or doesn't fit the structure of its
architectures.

• Scaling limitations: MySQL was initially designed
as a single-node system. Today's largest MySQL
installations cannot scale by using MySQL as a
single system and must rely on sharding or splitting
a data set over multiple nodes or instances.
However, most sharding solutions in MySQL are
manual and make application code more complex.
Any performance gain is lost when queries must
access data across multiple shards.

• Limited full-text searches at scale: MySQL can
handle basic full-text searches. However, because of
its inability to manage parallel processing, searches
do not scale well as data volumes increase. MySQL
was not designed for running secondary indexed
queries against massive data volumes, which
requires crunching through data on a vast scale.
A given MySQL query can neither scale among
multiple CPU cores in a single system nor execute
distributed queries across multiple nodes.

• Limited real-time global distributions: MySQL
cannot distribute a unified dataset to power
global access to your data and provide real-time
responses. MySQL Cluster is strongly consistent,
which does eventually provide up-to-date data, but
the cost is that it has high latency.

Redis Solution Brief / Modernize Your MySQL Database With Redis Enterprise © 2022 Redis

3

Benefits of Redis Enterprise with
MySQL

• Enabling real-time responses: Redis Enterprise as
an enterprise cache is designed for sub-millisecond
performance at scale and can guarantee high-
performance responses. MySQL was built for
transactions rather than speed at scale; Redis
Enterprise provides the speed required for instant
responses.

• Ingesting highly velocity data: To manage extreme
data velocity and gain insights faster with MySQL,
you need a data ingestion buffer, such as Redis
Enterprise, to handle large concurrent writes to a
relational database. Redis Enterprise offers a variety
of data structures such as streams, lists, sets, sorted
sets, and hashes that provide simple and versatile
data processing to combine high-speed data
ingestion and real-time analytics efficiently.

• Easily scales: Redis Enterprise automatically and
linearly scales, optimizing the consumption of
servers and DRAM. Unlike MySQL, with sharding
or partitioning, Redis Enterprise is not restricted to
storing data on a single computer's memory.

• Secondary index searches at scale: With its
powerful search engine Redis Enterprise provides
rapid secondary indexing against massive data
volume across multiple nodes. MySQL, at scale,
creates massive indexes that take forever to search
and often deliver sub-optimal results.

• Enables MySQL applications globally: Active-
Active Geo Distribution facilitates multiple Redis
Enterprise clusters, distributed across geographies,
to accept reads and writes simultaneously. The
combination of real-time speed, distribution, and
data consistency allows Redis Enterprise to easily
distribute MySQL applications globally.

How to implement MySQL
and Redis Enterprise
Redis Enterprise is regularly used as a cache with
MySQL to enable sub-millisecond responses and
reduce infrastructure costs. Redis Enterprise can also
be used with MySQL to ensure all data can quickly
be accessed by creating easily searchable secondary
indexes that provide optimized results.

MySQL and Redis Enterprise: How
they work together
There are many ways MySQL and Redis Enterprise
can work together to enable real-time responses. The
architecture and functionality choices will depend on
the specific use case you are trying to improve. These
include:

1. Secondary indexing with real-time search

2. Cache prefetching/Caching using the CQRS pattern

3. Write-behind caching

4. Active-Active Geo-Replication

Secondary indexing with real-time
search
Performing queries on secondary indexes can be
incredibly difficult and time-consuming in MySQL due to
the table structure. Redis Enterprise is commonly used
for secondary indexing to build relationships between
records and perform data queries (beyond primary keys)
in real-time while keeping your raw data in MySQL. With
Redis Enterprise, you can query your data at lightning
speed, perform complex aggregations, and filter by
properties, numeric ranges, and geographical distance.

Secondary indexing
One of the biggest challenges with MySQL is the
ability to perform quick data table look-ups, especially
at scale. Redis Enterprise can be used to quickly
generate secondary indexes to more easily query
the critical data required. One of the key benefits
of searching these secondary indexes on Redis
Enterprise is that the results are provided in real-time.

Redis Solution Brief / Modernize Your MySQL Database With Redis Enterprise © 2022 Redis

https://www.youtube.com/watch?v=mCOX-2ez-m4
https://www.youtube.com/watch?v=mCOX-2ez-m4

4

Customer case study: Faster,
richer query results with secondary
indexing enabled by Redis
Enterprise

This Redis Enterprise customer is a healthcare
provider that is part of an extensive public health
system. They have developed a homecare
solution that manages 4M documents per year,
10K users per day, 600K users per year, and over
200 hospitals. The site contains, among other
things, over $2B worth of billing information, lab
reports, immunization data, and test results, so
there is a lot of content.

The existing SQL database created extensive
indexes, limiting how queries could be done,
which were very slow. Secondary indexes via
Redis Enterprise were the way they solved this
problem. A secondary index is a data structure

containing a subset of attributes from a table
and an alternate key to support query operations.
This is a way to efficiently access records in a
database by using some piece of information
other than the standard primary key.

As you can see from the architecture diagram
below, the secondary index includes the
physician’s last name, which is how many people
search for a doctor. Creating these secondary
indexes is fast and easy, significantly reducing
the burden on the primary SQL database. Using
Redis Enterprise for secondary indexing and as a
cache in conjunction with your SQL database not
only improves the usability of the data by making
queries much more straightforward but also
enables real-time responses.

Redis Solution Brief / Modernize Your MySQL Database With Redis Enterprise © 2022 Redis

5

Caching
Using Redis Enterprise as a cache is one of the most
effective ways to speed up MySQL applications. Redis
Enterprise as a cache can also reduce the queries
that MySQL needs to handle. Reducing the burden
on MySQL enables you to minimize the infrastructure
requried reducing costs.

Cache prefetching
Cache prefetching is a technique used to boost
performance. Data is read from its original storage in
disk-based memory in MySQL. It is then written to a
much faster in-memory database, Redis Enterprise
before your application needs it. Accessing a cache is
typically much faster than accessing main memory, so
prefetching data and then accessing it from a cache
is usually much faster than accessing it directly from
main memory. This approach to offload reads to Redis
Enterprise greatly enhances application speed and
lowers the load on MySQL. Decreasing the load on
MySQL will lower the required infrastructure, reducing
the cost of running MySQL.

• The customer’s MySQL database acts as the
system of record, storing large quantities
of data about physicians in tables, with the
physician license number as the primary key
for queries.

• Redis Enterprise hashes the data and is used
to create secondary indexes on this data,
building relationships between records and
allowing for queries on data held in the table
beyond the primary key (license number) and
storing it in Redis Enterprise for real-time query
performance.

• When users need to look up a physician by
other attributes in the table, like physicians
with the last name “Smith,” they can use Redis
Enterprise to perform a secondary key query.

• Redis Enterprise queries a vast amount of
physician data held in secondary keys and
returns accurate results associated with that
record in real-time.

Customer benefits:

1. The customer was able to get more value
out of the data they held in MySQL, adding
the ability to query the wealth of secondary
data stored in their MySQL tables, making the
data more useful to power better customer
experiences.

2. Hashing the data into Redis Enterprise also
greatly improved query performance. Queries
were returned by Redis Enterprise in real-time
rather than waiting seconds or even minutes
for MySQL’s disk-based database to produce
results.

3. Querying Redis Enterprise reduced the
burden on the customer’s MySQL database,
reducing MySQL infrastructure costs.

CQRS (Command Query Responsibility Segregation)
is an application architecture pattern often used
in cache prefetching solutions. CQRS, in essence,
treats retrieving data and changing data differently.
CQRS uses command handlers to simplify the query
process and hide complex multi-system changes. It is
a pattern that separates read and update operations
for a data store. CQRS is a critical pattern within
microservice architectures that decouple reads and
writes. With MySQL as the system of record and Redis
Enterprise as an in-memory cache read database, you
can avoid slow queries and scale more easily.

Redis Solution Brief / Modernize Your MySQL Database With Redis Enterprise © 2022 Redis

6

Customer case study: Ensure
customer’s requirements are
met with cache prefetching from
MySQL to Redis Enterprise

This company is a global leader in customer
engagement software. Its cloud-based business
software suite is used by more than 150,000
organizations worldwide. They have seen
upwards of 50% year-over-year growth for the
past six years and topped $100 million in annual
recurring revenue. This extraordinary growth,
spurred by the rapid adoption of its products,
was straining the capabilities of application

architecture and development operations. As the
company's database load grew, it faced trouble
scaling performance. They needed to reduce the
burden on its primary MySQL database.

They added Redis Enterprise as a write-behind
cache to limit the number of queries going to
MySQL from their customer when they want to
access their customer engagement applications.
Using Redis Enterprise as a cache significantly
improves the response time of the customer
profile and usage information and minimizes the
impact and burden on their MySQL database.

Redis Solution Brief / Modernize Your MySQL Database With Redis Enterprise © 2022 Redis

7

• The customer's MySQL database is the source
for all customer profiles and usage information.

• Redis Enterprise is used as a write-behind
cache that maintains all customer interactions
and queries in real-time, enhancing customer
satisfaction.

• Redis Enterprise asynchronously writes any
updates required to the MySQL database,
limiting the burden on the database but
keeping MySQL, the system of record, up to
date.

Customer benefits:

1. The customer could more easily access the
data they held in MySQL, ensuring customers
received their information in real-time.

2. Caching the data into Redis Enterprise greatly
improved query performance. Queries were
returned by Redis Enterprise in real-time
rather than waiting seconds or even minutes
for MySQL’s disk-based database to return
results.

3. Querying Redis Enterprise reduced the
burden on the customer’s MySQL database,
reducing MySQL usage and infrastructure
costs.

Write-behind caching
Write behind cache is a caching strategy in which
your application communicates directly with the
cache, Redis Enterprise, and the data is later updated
to MySQL. This means that your applications only
need to link to your cache layer, and the cache then
reads from or updates the back-end database as
required.

Data is first written to Redis Enterprise and is then
asynchronously updated in MySQL. This approach
improves write performance and eases application
development since the developer writes in only one
place. Session Management is one of the use cases
where write-behind is used.

Session management
Session management captures the current status of
user interaction with applications such as a website
or video games. A typical web application keeps a
session for each connected user for as long as the
user is logged in. Session state is how apps remember
user identity, login credentials, personalization
information, recent actions, shopping cart, and more.

Reading and writing session data at each user
interaction must be done without hurting the user
experience. Behind the scenes, the session state
is cached for a specific user or application, which
allows a fast response to user actions. Therefore, while
the user session is live, no round-trip to the central
database should be needed.

In MySQL, storing session data, which requires frequent
reads and writes, is very slow and inefficient. Because
every user interaction involves access to the session's
data, keeping that data in Redis Enterprise increases the
response time to the application user.

Redis Solution Brief / Modernize Your MySQL Database With Redis Enterprise © 2022 Redis

https://redis.com/solutions/use-cases/session-management/?utm_source=pdf-modernizemysql-sb202209&utm_medium=referral

8

Customer case study: Millions
create their fantasy teams with
Redis Enterprise as a session store

MyTeam11 is a fantasy sports gaming platform
with unpredictable data loads for cricket, football
(soccer), kabaddi, hockey, basketball, handball,
volleyball, rugby, and baseball. It delivers 15 million+
MyTeam11 users with over 25,0000 operations
per second. MyTeam11 needs to handle the peak
data loads that hit in the 30 minutes leading up

to a cricket match as users rush to the platform
to set their fantasy rosters as soon as the starters
are announced. MyTeam11's MySQL database
was unable to handle the load.

MyTeam11 added Redis Enterprise as a cache
in front of their MySQL database. Doing this
provided sub-millisecond responses to all of their
users, even during peak data loads.

Redis Solution Brief / Modernize Your MySQL Database With Redis Enterprise © 2022 Redis

9

• MyTeam11 player information is easily and
quickly loaded into Redis Enterprise and
always in sync. The MySQL database is the
system of record.

• Users log in to set up fantasy teams resulting
in a session store on Redis Enterprise, ensuring
real-time interaction and customer satisfaction.

• All session management data is maintained
in Redis Enterprise until the session ends,
enabling millions of people to interact with the
platform simultaneously.

• Once the session ends, the data required to
be maintained is asynchronously written to
MySQL, limiting the burden and infrastructure
resources needed.

Customer benefits:

1. The customer could easily handle the volume
of users that want to access the data.

2. Caching the data into Redis Enterprise and
using a session store eliminated unnecessary
queries and writes to the MySQL database,
ensuring a real-time response.

3. Querying Redis Enterprise reduced the
burden on the customer’s MySQL database,
reducing MySQL usage and infrastructure
costs.

Redis Solution Brief / Modernize Your MySQL Database With Redis Enterprise © 2022 Redis

10

Active-Active Geo-Replication
Redis Enterprise enables the global distribution of MySQL applications with synchronized data. Redis Enterprise is
used to move to hybrid/multicloud architectures or support application modernization with a cloud-agnostic data
layer that unifies data across all your environments.

Customer case study: Easily create
globally distributed applications
with Redis Enterprise

A Redis Enterprise customer had an on-premises
environment that hosted legacy applications,
their middleware, and a MySQL database that
stored their application data. They were phasing
workloads and applications out of the on-
premises environment and re-platforming into
cloud-native microservices applications hosted
in Azure.

Replicating data in MySQL into Redis Enterprise
in their cloud environment was critical to
operating efficiently in both environments while
the customer globally distributed the application.
It allowed data held in MySQL to be cached into
Redis Enterprise and replicated into a cluster in
their new cloud environment. Redis Enterprise’s
Active-Active Geo Distribution synchronized data
between the on-premises and cloud environment
in real-time, enabling reads and writes in both
environments with data consistency.

Redis Solution Brief / Modernize Your MySQL Database With Redis Enterprise © 2022 Redis

11

• The on-premises MySQL environment contains
several critical applications that still serve
customers and are the system of record.

• The Azure environment is the destination for
workloads that have been moved to the cloud
using a phased migration approach.

• Data is cached from the MySQL database
into a local Redis Enterprise cluster hosted
on-premises.

• A Redis Enterprise cluster is hosted in Azure to
provide real-time data with local latency to the
new cloud-based applications.

• Active-Active Geo Distribution synchronizes
data between the on-premises and cloud
environments, enabling real-time reads
and writes in both environments with data
consistency.

Customer benefits:

1. Using Redis Enterprise enabled the customer
to globally distribute their applications stack
without disrupting their application or data
held in MySQL. Because of Active-Active Geo
Distribution, applications hosted on-premises
and new modern cloud applications were
both able to access and process data without
impacting the user experiences.

2. Using Redis Enterprise allowed for sub-
millisecond latency data cached in-memory
close to users for real-time user experiences
regardless of the hosting environment.

Connecting MySQL and Redis Enterprise
Redis Connect makes it easy for you to use Redis Enterprise as a cache with MySQL. The capture, transform, and
load process from MySQL into Redis Enterprise is easy and automated. Redis Connect propagates exact copies
and performs data synchronization of your MySQL database data without disrupting ongoing operations.

Redis Solution Brief / Modernize Your MySQL Database With Redis Enterprise © 2022 Redis

https://accelerationeconomy.com/data/redis-connect-solves-enterprise-hybrid-deployment-challenges/

12

Want to learn more about
MySQL and caching with
Redis Enterprise?
Caching at Scale with Redis – The only primer you
need to understand what application caching is,
why and when it's needed, and how to get the best
performance from your applications. Download Now.

Or start your journey toward faster, more powerful,
more cost-efficient MySQL applications today. Book a
meeting with Redis and get started.

Get the most out of your
MySQL database
Use Redis Enterprise to get the most out of and extend
the life of your MySQL database. Redis Enterprise
with MySQL applications will enable sub-millisecond
responses, increase customer satisfaction and reduce
your infrastructure cost. Some of the main benefits of
using Redis Enterprise alongside MySQL are:

1. Redis Enterprise brings real-time speed to our
real-time world: Used in conjunction with MySQL
to add sub-millisecond performance for real-time
application experiences, not only providing better
user experiences.

2. Redis Enterprise saves you money by minimizing
the infrastructure you need for MySQL: Used
to offload reads and writes from MySQL, allowing
you to only use MySQL when you need to, which
means less MySQL infrastructure while boosting
performance.

3. Redis Enterprise supports globally distributed
applications: Freeing your MySQL data to move
to hybrid or multicloud architectures and globally
distributed synchronized data, you can provide
real-time responses to your customers regardless
of location.

Redis Solution Brief / Modernize Your MySQL Database With Redis Enterprise © 2022 Redis

https://redis.com/docs/caching-at-scale-with-redis/?utm_source=pdf-modernizemysql-sb202209&utm_medium=referral
https://redis.com/meeting/?utm_source=pdf-modernizemysql-sb202209&utm_medium=referral
https://redis.com/meeting/?utm_source=pdf-modernizemysql-sb202209&utm_medium=referral

