
SOLUTION BRIEF

© 2022 Redis

Modernize Your Oracle Database 
With Redis Enterprise
Make Oracle faster and less expensive 
with Redis Enterprise



2

You want your applications 
to run as fast as possible in 
order to provide the real-time 
user experiences expected 
by today’s customers. Redis 
Enterprise is known for real-
time speed and can greatly 
improve the performance 
of your Oracle applications. 
You can use Redis Enterprise 
alongside Oracle as an 
enterprise cache or database, 
as an in-memory real-time 
data platform, to make 
Oracle applications faster, 
more efficient, and more 
cost-effective.

Oracle challenges: 
slow, expensive, and 
complicated
Oracle originated nearly 50 years ago in an era that 
not only predated the cloud but during a time in which 
storage and RAM were incredibly expensive. Storage 
was the primary constraint at the time, so relational 
databases were built with disk-based storage as a 
design principle over performance or data access.

The consequence of this design was an impedance 
mismatch between the way we store data within 
relational databases as columns and rows and the way 
modern applications access and visualize it as objects, 
documents, as a time-series, etc. Most obviously, 
application performance was constrained by the 
physical limits of a spinning disk. In addition, the extra 
complexity required to overcome this impedance 
mismatch limits the latency and throughput 
performance that today’s applications desperately 
need -- and customers expect.

Because of its aged design principles, Oracle 
customers often face challenges with:

•	 Performance: While relatively fast for a relational 
database, Oracle is still far too slow to power a 
slew of modern use-cases such as AI, session 
management, fraud detection, and real-time claims 
processing. 

•	 Cost: Oracle is incredibly expensive, which makes 
cost among the most common challenges. Oracle 
licenses typically cost tens of thousands of dollars. 
And when more Oracle databases are used, more 
costly Oracle licenses are required. 

•	 Inflexibility: Oracle only supports relational data. 
It cannot be used with multiple data models. Data 
in Oracle is subject to environment lock-in due to 
its difficulty in replicating data across deployment 
environments.

Redis Solution Brief / Modernize Your Oracle Database With Redis Enterprise © 2022 Redis



3

How Oracle and Redis 
Enterprise work together
There are many ways Redis Enterprise can make 
Oracle applications faster, less expensive, and 
capable of powering modern use-cases that process 
large volumes of data in real time. Redis Enterprise 
is commonly used with Oracle as an in-memory 
database or cache to perform sub-millisecond reads 
and writes, expand data usability and performance via 
secondary indexing and key queries, and to enable 
modern cloud and microservices applications.

•	 Secondary key queries: Use Redis Enterprise’s 
search engine for secondary indexing to support 
queries of Oracle data held in secondary keys, and 
cache and index data into Redis Enterprise from 
your Oracle database. You get sub-millisecond 
performance which permits you to query more 
data, faster. 

•	 Enterprise caching: Cache data from Oracle into 
Redis Enterprise to enhance the read and write 
application performance. Two common methods 
are:

•	 Write-behind caching for write-heavy 
workloads: Use Redis Enterprise to perform 
high write-throughput tasks such as processing 
financial transactions. In this instance, Redis 
Enterprise interacts directly with an application 
to perform a transaction in real-time, while 
asynchronously updating tables in Oracle that 
act as the permanent system of record. 

•	 Caching to offload read-heavy workloads: 
Redis Enterprise is often prefetched with data 
held in Oracle so that applications can read 
data from Redis Enterprise with sub-millisecond 
latency. A Command Query Responsibility 
Segregation (CQRS) pattern is often used to 
decouple reads and writes by writing directly 
to Oracle, while performing reads from a 
prefetched Redis Enterprise cache. 

•	 Application modernization: Redis Enterprise’s 
performance and flexible data models mean that 
it frees data stored in Oracle from the limitations 
of disk-based storage and relational schemas 
allowing it to be used for modern real-time use-
cases. Redis Enterprise can bridge the gap between 
legacy applications held on-premises and newer 
applications hosted in the cloud, by allowing 
data to be written and read in both environments 
simultaneously in real-time.

Secondary key queries
Due to the limitations of Oracle’s performance, data 
table lookups on secondary keys can be complex and 
time consuming in Oracle. Redis Enterprise’s real-time 
search engine is used to easily create a secondary 
index to support queries on secondary keys, enabling 
you to query more of your Oracle data, faster. 

To do this, Redis Enterprise can easily be used to store 
Oracle data in hashes, create an index on that data, 
and then query data at the speed of Redis. 

Redis Solution Brief / Modernize Your Oracle Database With Redis Enterprise © 2022 Redis



4

Customer case study: Faster, more 
efficient Oracle data table lookups 
with Redis Enterprise

A Redis Enterprise customer is a healthcare 
provider that manages over 600,000 patients 
per year at over 200 hospitals, along with all the 
data patient, medical, and billing records that 
they produce. 

They previously stored this vast quantity of data 
in an Oracle database that created incredibly 
large indexes, which limited the ability to query 
the full dataset and was incredibly slow. 

The customer turned to Redis Enterprise in 
order to address these challenges. They hashed 
data into Redis Enterprise and created a highly-
performant secondary index of their Oracle data. 
In this customer’s case, they had a database 
on physicians with the license number as the 
primary key:value, however they wanted to open 
this data up to additional search by attributes like 
last name or location. They used Redis Enterprise 
to index and perform real-time queries on 
secondary key attributes.

Redis Solution Brief / Modernize Your Oracle Database With Redis Enterprise © 2022 Redis



5

Caching
Redis Enterprise can be used with Oracle as a cache 
to speed up Oracle application performance and 
reduce Oracle usage and cost. Two common Redis 
Enterprise and Oracle caching patterns are: write-
behind caching for high write throughput workloads, 
and cache prefetching for read-heavy workloads. 

Write-behind caching
Oracle typically struggles in high write throughput 
scenarios when applications have a large volume of 
transactions that need to be processed in real time 
and updated in multiple Oracle tables. 

Explore a real customer scenario where a 
healthcare organization uses Redis Enterprise 
for secondary indexing and real-time queries 
on secondary key data in their large physician 
database:

1.	 The customer’s Oracle database acts as the 
system of record, storing large quantities 
of data about physicians in tables, with the 
physician license number as the primary key 
for queries.

2.	 Redis Enterprise hashes the data and is used 
to create secondary indexes on this data, 
building relationships between records and 
allowing for queries on data held in the table 
beyond the primary key (license number) and 
stores it in Redis Enterprise for real-time query 
performance.

3.	 When a user needs to to look up a physician 
by other attributes in the table, like physicians 
with the last name “Smith,” they can use Redis 
Enterprise to perform a secondary key query.

4.	 Redis Enterprise queries a vast amount of 
physician data held in secondary keys and 
returns accurate results associated with that 
record in real-time.

Customer benefits:

•	 The customer was able to get more value out 
of the data that they held in Oracle, adding 
the ability to query the wealth of secondary 
data held in their Oracle tables, making the 
data more useful to power better customer 
experiences.

•	 Hashing the data into Redis Enterprise also 
greatly improved query performance. Queries 
were returned by Redis Enterprise in real-time 
rather than waiting seconds or even minutes 
for Oracle’s disk-based database to return 
results.

•	 Querying Redis Enterprise reduced the burden 
on the customer’s Oracle database, reducing 
Oracle usage and overall costs.

Redis Enterprise can be used as a write-behind 
cache, directly receiving and processing thousands 
of write requests from the application in less than 
a millisecond, and asynchronously updating any 
subsequent tables in Oracle, which acts as the system 
of record. 

Using Redis Enterprise as a write-behind cache for 
your Oracle applications greatly speeds up write-
heavy workloads, while reducing load on your 
database and ensuring data is accurate. 

Redis Solution Brief / Modernize Your Oracle Database With Redis Enterprise © 2022 Redis



6

Customer case study: Real-time 
payment processing using Redis 
Enterprise as a write-behind cache

A major U.S. financial institution has an online 
banking application that supports millions of 
customers. At any given second, they process 
tens of thousands of payments, each of which 
requires records of the transaction to be written 
to over ten tables in Oracle. The customer found 
Oracle alone unable to perform with this high 
volume of user activity and writes. 

To improve performance they used Redis 
Enterprise as a write-behind cache to process 
their banking application’s online payment 
in real time, while ensuring data integrity by 
asynchronously updating their system of 
record in Oracle after the transaction had been 
approved. 

Redis Solution Brief / Modernize Your Oracle Database With Redis Enterprise © 2022 Redis



7

Explore a scenario where a banking customer 
uses Redis Enterprise as a write-behind cache to 
process online financial transactions in real time 
and store records in Oracle.

1.	 The bank powers an online banking 
application used by customers to check 
balances, make deposits, and make online 
payments.

2.	 When a user requests to make a payment, 
details about the transaction are written to 
Redis Enterprise with sub-millisecond speed.

3.	 Redis Enterprise handles writes because it 
enables a high volume of transactions to be 
processed in real time, without making users 
wait while for slow Oracle write operations, 
by updating Oracle tables in the background 
after the transaction has been processed in 
Redis.

4.	 For each write, a write operation to a 
Redis Hash key triggers the execution of a 
RedisGears function that reads data from the 
Hash, writes it into a Redis Stream, and then 
adds it to a queue. RedisGears is an engine for 
batch and event-driven processing of Redis 
data. Redis Streams is a Redis data structure 
that acts as an append-only log to syndicate 
events in real time.

5.	 The transaction is first processed. Data and 
a confirmation message are then returned to 
the user.

6.	 In the background, another RedisGears 
function reads the Redis Stream from the 
queue and writes the details to multiple tables 
in Oracle. The operation is split into two 
functions so that the RedisGears function that 
interacts with Redis Enterprise can operate in 
real time without being slowed down by the 
function that is dependent on slower writes to 
the Oracle tables.

7.	 Using Redis Streams, data from the 
transaction is then asynchronously updated 
from Redis Enterprise into the bank’s tables in 
Oracle, which acts as its system of record and 
holds a large volume of historical customer 
and transaction data in tables. Tables hold 
data around authorization, transactions, credit 
checks, balance checks, and more.

Customer benefits:

•	 The customer was able to cut their payment 
processing time from seconds to sub-
milliseconds, greatly enhancing the customer 
experience in a competitive market.

•	 They were able to retain Oracle as their 
system of record, while adding the real-time 
performance of Redis Enterprise, without any 
major application refactoring or disruption to 
their application.

•	 Because they were processing less Oracle 
writes, they reduced Oracle usage leading to 
saved costs. 

Cache prefetching and CQRS
Cache prefetching is a technique where data is read 
from its original storage in slow disk-based storage, 
like Oracle, which is then written to a much faster 
in-memory database, Redis Enterprise, before it is 
needed by your application. Using this approach to 
offload reads to Redis Enterprise improves application 
speed while lowering costs via reduced Oracle usage. 

CQRS (Command Query Responsibility Segregation) 
is an application architecture pattern often used in 
cache prefetching solutions. CQRS is a critical pattern 
within microservice architectures that decouple 
reads and writes. Oracle and Redis Enterprise can use 
this pattern to enable an application to write only to 
Oracle, while prefetching reads into Redis Enterprise 
for the application to read from data that’s cached in-
memory, for far better read performance. 

Redis Solution Brief / Modernize Your Oracle Database With Redis Enterprise © 2022 Redis

https://docs.redis.com/latest/modules/redisgears/?utm_source=pdf-modernizeoracle-sb202209&utm_medium=referral
https://redis.io/docs/data-types/streams/?utm_source=pdf-modernizeoracle-sb202209&utm_medium=referral


8

Customer case study: Powering 
real-time business intelligence and 
analytics with cache prefetching 
from Oracle to Redis Enterprise

A major financial institution had an Oracle 
database that held over five years of historical 
data, consisting of millions of records generated 
by their application portfolio. The customer’s 
executive team needed to use this data for 
reporting, compliance, and to guide data-driven 
business decisions. 

Data was visualized and analyzed in a Tableau® 
dashboard that was querying data from Oracle. 
Due to the incredibly slow process of querying 
such a high volume of data from Oracle, 
executives found the dashboards to be nearly 
unusable. 

The customer decided that they needed a 
new approach to their analytics and BI tools, 
and decided to use Redis Enterprise alongside 
Oracle. Oracle was still used as the primary 
system of record for the customer’s historical 
dataset, however the data was cached into Redis 
Enterprise to power real-time analytics in their 
Tableau dashboard. 

Redis Solution Brief / Modernize Your Oracle Database With Redis Enterprise © 2022 Redis



9

Explore a scenario where a Redis Enterprise 
financial services customer prefetches data from 
Oracle into Redis Enterprise to power real-time 
analysis on years of historical data held in Oracle.

1.	 The customer has a portfolio of financial 
services applications that perform a multitude 
of functions.

2.	 The applications store years of historical data, 
consisting of millions of records, in Oracle.

3.	 The data is synchronized from the system of 
record in Oracle into Redis Enterprise using 
RedisConnect. RedisConnect is used to 
automatically capture, transform, and load 
data from Oracle into Redis Enterprise to 
ensure integrity of data viewed in Tableau.

4.	 Data is synchronized from Oracle into Redis 
Enterprise, allowing data to be queried and 
retrieved in real-time.

5.	 Redis SQL is a plug-in for RediSearch that acts 
as an interface between Tableau and Redis 
Enterprise, allowing Tableau to perform SQL 
queries against data stored in Redis Enterprise 
using a JDBC connection, and display it in 
Tableau dashboards.

6.	 Executives can query, filter, and analyze large 
quantities of data from Redis Enterprise in a 
Tableau dashboard. Data is returned within 
seconds, rather than minutes.

Customer benefits:

•	 Data load times were reduced from over 
twenty minutes to seconds.

•	 The customer greatly improved their reporting 
capabilities. Doing so unlocked the value of 
years of historical business data.

•	 The customer continued operating 
their Oracle-based applications without 
interruption, while synchronizing data into 
Redis Enterprise to power BI and analytics in 
Tableau.

Redis Solution Brief / Modernize Your Oracle Database With Redis Enterprise © 2022 Redis



10

Application modernization
Redis Enterprise is commonly used to free customers’ Oracle applications from the limitations of Oracle and 
facilitate application modernization. Redis Enterprise can unlock data stored in Oracle from the limitations of 
disk-based storage and relational schemas, and open it up to a multitude of modern use-cases. It also can help 
organizations move to hybrid or multicloud architectures or support application modernization with a cloud-
agnostic data layer that unifies data across all of their environments.

Customer case study: Using Redis 
Enterprise to modernize Oracle 
applications

One Redis Enterprise customer had an on-
premises environment that hosted legacy 
applications, their middleware, and an Oracle 
database that stored their application data. 
The organization was phasing workloads 
and applications out of the on-premises 
environment and replatforming into cloud-native 
microservices applications hosted in AWS.

Replicating data in Oracle into Redis Enterprise 
in their cloud environment was critical to 
operating efficiently in both environments while 
the customer modernized. It allowed data held 
in Oracle to be cached into Redis Enterprise 
and replicated into a cluster in their new cloud 
environment. Redis Enterprise’s Active-Active 
Geo Distribution synchronized data between the 
on-premises and cloud environment in real time, 
enabling reads and writes in both environments 
with data consistency.

Redis Solution Brief / Modernize Your Oracle Database With Redis Enterprise © 2022 Redis



11

Explore how a Redis Enterprise customer’s 
hybrid cloud cache supported application 
modernization:

1.	 The on-premises environment contains a 
number of mature applications that still serve 
customers, but have not yet been migrated to 
AWS for modernization.

2.	 The AWS environment is the destination for 
workloads that have been moved to the cloud 
using a phased migration approach.

3.	 There are a number of aging production 
applications still in use and hosted in the on-
premises environment.

4.	 The on-premises environment also hosts an 
Oracle database that contains data needed 
by both the on-premises legacy applications 
as well as the modernized cloud applications.

5.	 Data is cached from the Oracle database 
into a local Redis Enterprise cluster hosted 
on-premises.

6.	 A few microservices applications have already 
been phased out of the on-prem environment 
and moved into AWS to be modernized, 
including new mobile and web interfaces for 
their flagship retail application.

7.	 A Redis Enterprise cluster is hosted in AWS 
to provide real-time data with local latency to 
the new cloud-based applications.

8.	 Active-Active Geo Distribution synchronizes 
data between the on-premises and cloud 
environments, enabling real-time reads 
and writes in both environments with data 
consistency.

Customer benefits:

•	 Using Redis Enterprise enabled the customer 
to modernize their technology stack over a 
period of months, without disruption to their 
application or data held in Oracle. Because of 
Active-Active Geo Distribution, applications 
hosted on-premises and new modern cloud 
applications were both able to access and 
process data without impacting the user 
experiences. 

•	 Redis Enterprise unlocked data trapped by 
Oracle’s schema and performance limitations 
to new modern application use-cases. 

•	 Using Redis Enterprise allowed for sub-
millisecond latency data cached in-memory 
close to users for real-time user experiences 
regardless of the hosting environment.

Redis Solution Brief / Modernize Your Oracle Database With Redis Enterprise © 2022 Redis



12

Want to learn more?
Now that you know you need the real-time 
performance that comes with an in-memory cache 
and database, how do you choose the right solution 
for you?

Check out our Buyer’s Guide for Enterprise Caching 
to learn what enterprise caching is, when it’s required, 
and evaluate criteria for selecting an enterprise-grade 
caching solution. Download now.

Or start your journey toward faster, more powerful, 
more cost-efficient Oracle applications today. Book a 
meeting with Redis and get started.

Why your Oracle 
applications need Redis 
Enterprise
Today’s applications are faster, more powerful, and 
routinely capable of doing things we considered 
extraordinary just years ago. But if you’re running 
Oracle applications, chances are your database is 
hindering your application modernization initiative. 
There is an easy solution: Redis Enterprise. Redis 
Enterprise can work alongside your Oracle database, 
allowing you to continue to operate your existing 
applications, while simultaneously adding the sub-
millisecond performance, scalability, resilience, and 
flexibility needed to power today’s most cutting edge 
applications. Some of the main benefits of using Redis 
Enterprise alongside Oracle are:

•	 Redis Enterprise brings real-time speed for our 
real-time world: It can be used alongside Oracle 
to add sub-millisecond performance for real-time 
application experiences, not only providing better 
user experiences but allowing businesses to unlock 
new use-cases with their data.

•	 Redis Enterprise saves you money by allowing 
you to use Oracle less: And can be used to offload 
reads and writes from Oracle, allowing you to only 
use Oracle when you really need to, which means 
less expensive Oracle infrastructure and licenses 
needed (while boosting performance). 

•	 Redis Enterprise supports application 
modernization: By freeing your Oracle data to 
move to hybrid or multicloud architectures and 
supporting application modernization with a cloud-
agnostic data layer that unifies data across all of 
your environments.

Redis Solution Brief / Modernize Your Oracle Database With Redis Enterprise © 2022 Redis

https://redis.com/docs/buyers-guide-for-enterprise-caching/?utm_source=pdf-modernizeoracle-sb202209&utm_medium=referral
https://redis.com/meeting/?utm_source=pdf-modernizeoracle-sb202209&utm_medium=referral
https://redis.com/meeting/?utm_source=pdf-modernizeoracle-sb202209&utm_medium=referral

