*Modules API reference

*Sections

*Heap allocation raw functions

Memory allocated with these functions are taken into account by Redis key eviction algorithms and are reported in Redis memory usage information.

*RedisModule_Alloc

void *RedisModule_Alloc(size_t bytes);

Use like malloc(). Memory allocated with this function is reported in Redis INFO memory, used for keys eviction according to maxmemory settings and in general is taken into account as memory allocated by Redis. You should avoid using malloc().

*RedisModule_Calloc

void *RedisModule_Calloc(size_t nmemb, size_t size);

Use like calloc(). Memory allocated with this function is reported in Redis INFO memory, used for keys eviction according to maxmemory settings and in general is taken into account as memory allocated by Redis. You should avoid using calloc() directly.

*RedisModule_Realloc

void* RedisModule_Realloc(void *ptr, size_t bytes);

Use like realloc() for memory obtained with RedisModule_Alloc().

*RedisModule_Free

void RedisModule_Free(void *ptr);

Use like free() for memory obtained by RedisModule_Alloc() and RedisModule_Realloc(). However you should never try to free with RedisModule_Free() memory allocated with malloc() inside your module.

*RedisModule_Strdup

char *RedisModule_Strdup(const char *str);

Like strdup() but returns memory allocated with RedisModule_Alloc().

*RedisModule_PoolAlloc

void *RedisModule_PoolAlloc(RedisModuleCtx *ctx, size_t bytes);

Return heap allocated memory that will be freed automatically when the module callback function returns. Mostly suitable for small allocations that are short living and must be released when the callback returns anyway. The returned memory is aligned to the architecture word size if at least word size bytes are requested, otherwise it is just aligned to the next power of two, so for example a 3 bytes request is 4 bytes aligned while a 2 bytes request is 2 bytes aligned.

There is no realloc style function since when this is needed to use the pool allocator is not a good idea.

The function returns NULL if bytes is 0.

*Commands API

These functions are used to implement custom Redis commands.

For examples, see https://redis.io/topics/modules-intro.

*RedisModule_IsKeysPositionRequest

int RedisModule_IsKeysPositionRequest(RedisModuleCtx *ctx);

Return non-zero if a module command, that was declared with the flag "getkeys-api", is called in a special way to get the keys positions and not to get executed. Otherwise zero is returned.

*RedisModule_KeyAtPos

void RedisModule_KeyAtPos(RedisModuleCtx *ctx, int pos);

When a module command is called in order to obtain the position of keys, since it was flagged as "getkeys-api" during the registration, the command implementation checks for this special call using the RedisModule_IsKeysPositionRequest() API and uses this function in order to report keys, like in the following example:

if (RedisModule_IsKeysPositionRequest(ctx)) {
    RedisModule_KeyAtPos(ctx,1);
    RedisModule_KeyAtPos(ctx,2);
}

Note: in the example below the get keys API would not be needed since keys are at fixed positions. This interface is only used for commands with a more complex structure.

*RedisModule_CreateCommand

int RedisModule_CreateCommand(RedisModuleCtx *ctx,
                              const char *name,
                              RedisModuleCmdFunc cmdfunc,
                              const char *strflags,
                              int firstkey,
                              int lastkey,
                              int keystep);

Register a new command in the Redis server, that will be handled by calling the function pointer 'func' using the RedisModule calling convention. The function returns REDISMODULE_ERR if the specified command name is already busy or a set of invalid flags were passed, otherwise REDISMODULE_OK is returned and the new command is registered.

This function must be called during the initialization of the module inside the RedisModule_OnLoad() function. Calling this function outside of the initialization function is not defined.

The command function type is the following:

 int MyCommand_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc);

And is supposed to always return REDISMODULE_OK.

The set of flags 'strflags' specify the behavior of the command, and should be passed as a C string composed of space separated words, like for example "write deny-oom". The set of flags are:

  • "write": The command may modify the data set (it may also read from it).
  • "readonly": The command returns data from keys but never writes.
  • "admin": The command is an administrative command (may change replication or perform similar tasks).
  • "deny-oom": The command may use additional memory and should be denied during out of memory conditions.
  • "deny-script": Don't allow this command in Lua scripts.
  • "allow-loading": Allow this command while the server is loading data. Only commands not interacting with the data set should be allowed to run in this mode. If not sure don't use this flag.
  • "pubsub": The command publishes things on Pub/Sub channels.
  • "random": The command may have different outputs even starting from the same input arguments and key values.
  • "allow-stale": The command is allowed to run on slaves that don't serve stale data. Don't use if you don't know what this means.
  • "no-monitor": Don't propagate the command on monitor. Use this if the command has sensible data among the arguments.
  • "no-slowlog": Don't log this command in the slowlog. Use this if the command has sensible data among the arguments.
  • "fast": The command time complexity is not greater than O(log(N)) where N is the size of the collection or anything else representing the normal scalability issue with the command.
  • "getkeys-api": The command implements the interface to return the arguments that are keys. Used when start/stop/step is not enough because of the command syntax.
  • "no-cluster": The command should not register in Redis Cluster since is not designed to work with it because, for example, is unable to report the position of the keys, programmatically creates key names, or any other reason.
  • "no-auth": This command can be run by an un-authenticated client. Normally this is used by a command that is used to authenticate a client.
  • "may-replicate": This command may generate replication traffic, even though it's not a write command.

*Module information and time measurement

*RedisModule_IsModuleNameBusy

int RedisModule_IsModuleNameBusy(const char *name);

Return non-zero if the module name is busy. Otherwise zero is returned.

*RedisModule_Milliseconds

long long RedisModule_Milliseconds(void);

Return the current UNIX time in milliseconds.

*RedisModule_BlockedClientMeasureTimeStart

int RedisModule_BlockedClientMeasureTimeStart(RedisModuleBlockedClient *bc);

Mark a point in time that will be used as the start time to calculate the elapsed execution time when RedisModule_BlockedClientMeasureTimeEnd() is called. Within the same command, you can call multiple times RedisModule_BlockedClientMeasureTimeStart() and RedisModule_BlockedClientMeasureTimeEnd() to accummulate indepedent time intervals to the background duration. This method always return REDISMODULE_OK.

*RedisModule_BlockedClientMeasureTimeEnd

int RedisModule_BlockedClientMeasureTimeEnd(RedisModuleBlockedClient *bc);

Mark a point in time that will be used as the end time to calculate the elapsed execution time. On success REDISMODULE_OK is returned. This method only returns REDISMODULE_ERR if no start time was previously defined ( meaning RedisModule_BlockedClientMeasureTimeStart was not called ).

*RedisModule_SetModuleOptions

void RedisModule_SetModuleOptions(RedisModuleCtx *ctx, int options);

Set flags defining capabilities or behavior bit flags.

REDISMODULE_OPTIONS_HANDLE_IO_ERRORS: Generally, modules don't need to bother with this, as the process will just terminate if a read error happens, however, setting this flag would allow repl-diskless-load to work if enabled. The module should use RedisModule_IsIOError after reads, before using the data that was read, and in case of error, propagate it upwards, and also be able to release the partially populated value and all it's allocations.

REDISMODULE_OPTION_NO_IMPLICIT_SIGNAL_MODIFIED: See RedisModule_SignalModifiedKey().

*RedisModule_SignalModifiedKey

int RedisModule_SignalModifiedKey(RedisModuleCtx *ctx,
                                  RedisModuleString *keyname);

Signals that the key is modified from user's perspective (i.e. invalidate WATCH and client side caching).

This is done automatically when a key opened for writing is closed, unless the option REDISMODULE_OPTION_NO_IMPLICIT_SIGNAL_MODIFIED has been set using RedisModule_SetModuleOptions().

*Automatic memory management for modules

*RedisModule_AutoMemory

void RedisModule_AutoMemory(RedisModuleCtx *ctx);

Enable automatic memory management.

The function must be called as the first function of a command implementation that wants to use automatic memory.

When enabled, automatic memory management tracks and automatically frees keys, call replies and Redis string objects once the command returns. In most cases this eliminates the need of calling the following functions:

  1. RedisModule_CloseKey()
  2. RedisModule_FreeCallReply()
  3. RedisModule_FreeString()

These functions can still be used with automatic memory management enabled, to optimize loops that make numerous allocations for example.

*String objects APIs

*RedisModule_CreateString

RedisModuleString *RedisModule_CreateString(RedisModuleCtx *ctx,
                                            const char *ptr,
                                            size_t len);

Create a new module string object. The returned string must be freed with RedisModule_FreeString(), unless automatic memory is enabled.

The string is created by copying the len bytes starting at ptr. No reference is retained to the passed buffer.

The module context 'ctx' is optional and may be NULL if you want to create a string out of the context scope. However in that case, the automatic memory management will not be available, and the string memory must be managed manually.

*RedisModule_CreateStringPrintf

RedisModuleString *RedisModule_CreateStringPrintf(RedisModuleCtx *ctx,
                                                  const char *fmt,
                                                  ...);

Create a new module string object from a printf format and arguments. The returned string must be freed with RedisModule_FreeString(), unless automatic memory is enabled.

The string is created using the sds formatter function sdscatvprintf().

The passed context 'ctx' may be NULL if necessary, see the RedisModule_CreateString() documentation for more info.

*RedisModule_CreateStringFromLongLong

RedisModuleString *RedisModule_CreateStringFromLongLong(RedisModuleCtx *ctx,
                                                        long long ll);

Like RedisModule_CreatString(), but creates a string starting from a long long integer instead of taking a buffer and its length.

The returned string must be released with RedisModule_FreeString() or by enabling automatic memory management.

The passed context 'ctx' may be NULL if necessary, see the RedisModule_CreateString() documentation for more info.

*RedisModule_CreateStringFromDouble

RedisModuleString *RedisModule_CreateStringFromDouble(RedisModuleCtx *ctx,
                                                      double d);

Like RedisModule_CreatString(), but creates a string starting from a double instead of taking a buffer and its length.

The returned string must be released with RedisModule_FreeString() or by enabling automatic memory management.

*RedisModule_CreateStringFromLongDouble

RedisModuleString *RedisModule_CreateStringFromLongDouble(RedisModuleCtx *ctx,
                                                          long double ld,
                                                          int humanfriendly);

Like RedisModule_CreatString(), but creates a string starting from a long double.

The returned string must be released with RedisModule_FreeString() or by enabling automatic memory management.

The passed context 'ctx' may be NULL if necessary, see the RedisModule_CreateString() documentation for more info.

*RedisModule_CreateStringFromString

RedisModuleString *RedisModule_CreateStringFromString(RedisModuleCtx *ctx,
                                                      const RedisModuleString *str);

Like RedisModule_CreatString(), but creates a string starting from another RedisModuleString.

The returned string must be released with RedisModule_FreeString() or by enabling automatic memory management.

The passed context 'ctx' may be NULL if necessary, see the RedisModule_CreateString() documentation for more info.

*RedisModule_CreateStringFromStreamID

RedisModuleString *RedisModule_CreateStringFromStreamID(RedisModuleCtx *ctx,
                                                        const RedisModuleStreamID *id);

Creates a string from a stream ID. The returned string must be released with RedisModule_FreeString(), unless automatic memory is enabled.

The passed context ctx may be NULL if necessary. See the RedisModule_CreateString() documentation for more info.

*RedisModule_FreeString

void RedisModule_FreeString(RedisModuleCtx *ctx, RedisModuleString *str);

Free a module string object obtained with one of the Redis modules API calls that return new string objects.

It is possible to call this function even when automatic memory management is enabled. In that case the string will be released ASAP and removed from the pool of string to release at the end.

If the string was created with a NULL context 'ctx', it is also possible to pass ctx as NULL when releasing the string (but passing a context will not create any issue). Strings created with a context should be freed also passing the context, so if you want to free a string out of context later, make sure to create it using a NULL context.

*RedisModule_RetainString

void RedisModule_RetainString(RedisModuleCtx *ctx, RedisModuleString *str);

Every call to this function, will make the string 'str' requiring an additional call to RedisModule_FreeString() in order to really free the string. Note that the automatic freeing of the string obtained enabling modules automatic memory management counts for one RedisModule_FreeString() call (it is just executed automatically).

Normally you want to call this function when, at the same time the following conditions are true:

  1. You have automatic memory management enabled.
  2. You want to create string objects.
  3. Those string objects you create need to live after the callback function(for example a command implementation) creating them returns.

Usually you want this in order to store the created string object into your own data structure, for example when implementing a new data type.

Note that when memory management is turned off, you don't need any call to RetainString() since creating a string will always result into a string that lives after the callback function returns, if no FreeString() call is performed.

It is possible to call this function with a NULL context.

*RedisModule_HoldString

RedisModuleString* RedisModule_HoldString(RedisModuleCtx *ctx,
                                          RedisModuleString *str);

This function can be used instead of RedisModule_RetainString(). The main difference between the two is that this function will always succeed, whereas RedisModule_RetainString() may fail because of an assertion.

The function returns a pointer to RedisModuleString, which is owned by the caller. It requires a call to RedisModule_FreeString() to free the string when automatic memory management is disabled for the context. When automatic memory management is enabled, you can either call RedisModule_FreeString() or let the automation free it.

This function is more efficient than RedisModule_CreateStringFromString() because whenever possible, it avoids copying the underlying RedisModuleString. The disadvantage of using this function is that it might not be possible to use RedisModule_StringAppendBuffer() on the returned RedisModuleString.

It is possible to call this function with a NULL context.

*RedisModule_StringPtrLen

const char *RedisModule_StringPtrLen(const RedisModuleString *str,
                                     size_t *len);

Given a string module object, this function returns the string pointer and length of the string. The returned pointer and length should only be used for read only accesses and never modified.

*RedisModule_StringToLongLong

int RedisModule_StringToLongLong(const RedisModuleString *str, long long *ll);

Convert the string into a long long integer, storing it at *ll. Returns REDISMODULE_OK on success. If the string can't be parsed as a valid, strict long long (no spaces before/after), REDISMODULE_ERR is returned.

*RedisModule_StringToDouble

int RedisModule_StringToDouble(const RedisModuleString *str, double *d);

Convert the string into a double, storing it at *d. Returns REDISMODULE_OK on success or REDISMODULE_ERR if the string is not a valid string representation of a double value.

*RedisModule_StringToLongDouble

int RedisModule_StringToLongDouble(const RedisModuleString *str,
                                   long double *ld);

Convert the string into a long double, storing it at *ld. Returns REDISMODULE_OK on success or REDISMODULE_ERR if the string is not a valid string representation of a double value.

*RedisModule_StringToStreamID

int RedisModule_StringToStreamID(const RedisModuleString *str,
                                 RedisModuleStreamID *id);

Convert the string into a stream ID, storing it at *id. Returns REDISMODULE_OK on success and returns REDISMODULE_ERR if the string is not a valid string representation of a stream ID. The special IDs "+" and "-" are allowed.

*RedisModule_StringCompare

int RedisModule_StringCompare(RedisModuleString *a, RedisModuleString *b);

Compare two string objects, returning -1, 0 or 1 respectively if a < b, a == b, a > b. Strings are compared byte by byte as two binary blobs without any encoding care / collation attempt.

*RedisModule_StringAppendBuffer

int RedisModule_StringAppendBuffer(RedisModuleCtx *ctx,
                                   RedisModuleString *str,
                                   const char *buf,
                                   size_t len);

Append the specified buffer to the string 'str'. The string must be a string created by the user that is referenced only a single time, otherwise REDISMODULE_ERR is returned and the operation is not performed.

*Reply APIs

These functions are used for sending replies to the client.

Most functions always return REDISMODULE_OK so you can use it with 'return' in order to return from the command implementation with:

if (... some condition ...)
    return RedisModule_ReplyWithLongLong(ctx,mycount);

*RedisModule_WrongArity

int RedisModule_WrongArity(RedisModuleCtx *ctx);

Send an error about the number of arguments given to the command, citing the command name in the error message. Returns REDISMODULE_OK.

Example:

if (argc != 3) return RedisModule_WrongArity(ctx);

*RedisModule_ReplyWithLongLong

int RedisModule_ReplyWithLongLong(RedisModuleCtx *ctx, long long ll);

Send an integer reply to the client, with the specified long long value. The function always returns REDISMODULE_OK.

*RedisModule_ReplyWithError

int RedisModule_ReplyWithError(RedisModuleCtx *ctx, const char *err);

Reply with the error 'err'.

Note that 'err' must contain all the error, including the initial error code. The function only provides the initial "-", so the usage is, for example:

RedisModule_ReplyWithError(ctx,"ERR Wrong Type");

and not just:

RedisModule_ReplyWithError(ctx,"Wrong Type");

The function always returns REDISMODULE_OK.

*RedisModule_ReplyWithSimpleString

int RedisModule_ReplyWithSimpleString(RedisModuleCtx *ctx, const char *msg);

Reply with a simple string (+... \r\n in RESP protocol). This replies are suitable only when sending a small non-binary string with small overhead, like "OK" or similar replies.

The function always returns REDISMODULE_OK.

*RedisModule_ReplyWithArray

int RedisModule_ReplyWithArray(RedisModuleCtx *ctx, long len);

Reply with an array type of 'len' elements. However 'len' other calls to ReplyWith* style functions must follow in order to emit the elements of the array.

When producing arrays with a number of element that is not known beforehand the function can be called with the special count REDISMODULE_POSTPONED_ARRAY_LEN, and the actual number of elements can be later set with RedisModule_ReplySetArrayLength() (which will set the latest "open" count if there are multiple ones).

The function always returns REDISMODULE_OK.

*RedisModule_ReplyWithNullArray

int RedisModule_ReplyWithNullArray(RedisModuleCtx *ctx);

Reply to the client with a null array, simply null in RESP3 null array in RESP2.

The function always returns REDISMODULE_OK.

*RedisModule_ReplyWithEmptyArray

int RedisModule_ReplyWithEmptyArray(RedisModuleCtx *ctx);

Reply to the client with an empty array.

The function always returns REDISMODULE_OK.

*RedisModule_ReplySetArrayLength

void RedisModule_ReplySetArrayLength(RedisModuleCtx *ctx, long len);

When RedisModule_ReplyWithArray() is used with the argument REDISMODULE_POSTPONED_ARRAY_LEN, because we don't know beforehand the number of items we are going to output as elements of the array, this function will take care to set the array length.

Since it is possible to have multiple array replies pending with unknown length, this function guarantees to always set the latest array length that was created in a postponed way.

For example in order to output an array like [1,[10,20,30]] we could write:

 RedisModule_ReplyWithArray(ctx,REDISMODULE_POSTPONED_ARRAY_LEN);
 RedisModule_ReplyWithLongLong(ctx,1);
 RedisModule_ReplyWithArray(ctx,REDISMODULE_POSTPONED_ARRAY_LEN);
 RedisModule_ReplyWithLongLong(ctx,10);
 RedisModule_ReplyWithLongLong(ctx,20);
 RedisModule_ReplyWithLongLong(ctx,30);
 RedisModule_ReplySetArrayLength(ctx,3); // Set len of 10,20,30 array.
 RedisModule_ReplySetArrayLength(ctx,2); // Set len of top array

Note that in the above example there is no reason to postpone the array length, since we produce a fixed number of elements, but in the practice the code may use an iterator or other ways of creating the output so that is not easy to calculate in advance the number of elements.

*RedisModule_ReplyWithStringBuffer

int RedisModule_ReplyWithStringBuffer(RedisModuleCtx *ctx,
                                      const char *buf,
                                      size_t len);

Reply with a bulk string, taking in input a C buffer pointer and length.

The function always returns REDISMODULE_OK.

*RedisModule_ReplyWithCString

int RedisModule_ReplyWithCString(RedisModuleCtx *ctx, const char *buf);

Reply with a bulk string, taking in input a C buffer pointer that is assumed to be null-terminated.

The function always returns REDISMODULE_OK.

*RedisModule_ReplyWithString

int RedisModule_ReplyWithString(RedisModuleCtx *ctx, RedisModuleString *str);

Reply with a bulk string, taking in input a RedisModuleString object.

The function always returns REDISMODULE_OK.

*RedisModule_ReplyWithEmptyString

int RedisModule_ReplyWithEmptyString(RedisModuleCtx *ctx);

Reply with an empty string.

The function always returns REDISMODULE_OK.

*RedisModule_ReplyWithVerbatimString

int RedisModule_ReplyWithVerbatimString(RedisModuleCtx *ctx,
                                        const char *buf,
                                        size_t len);

Reply with a binary safe string, which should not be escaped or filtered taking in input a C buffer pointer and length.

The function always returns REDISMODULE_OK.

*RedisModule_ReplyWithNull

int RedisModule_ReplyWithNull(RedisModuleCtx *ctx);

Reply to the client with a NULL.

The function always returns REDISMODULE_OK.

*RedisModule_ReplyWithCallReply

int RedisModule_ReplyWithCallReply(RedisModuleCtx *ctx,
                                   RedisModuleCallReply *reply);

Reply exactly what a Redis command returned us with RedisModule_Call(). This function is useful when we use RedisModule_Call() in order to execute some command, as we want to reply to the client exactly the same reply we obtained by the command.

The function always returns REDISMODULE_OK.

*RedisModule_ReplyWithDouble

int RedisModule_ReplyWithDouble(RedisModuleCtx *ctx, double d);

Send a string reply obtained converting the double 'd' into a bulk string. This function is basically equivalent to converting a double into a string into a C buffer, and then calling the function RedisModule_ReplyWithStringBuffer() with the buffer and length.

The function always returns REDISMODULE_OK.

*RedisModule_ReplyWithLongDouble

int RedisModule_ReplyWithLongDouble(RedisModuleCtx *ctx, long double ld);

Send a string reply obtained converting the long double 'ld' into a bulk string. This function is basically equivalent to converting a long double into a string into a C buffer, and then calling the function RedisModule_ReplyWithStringBuffer() with the buffer and length. The double string uses human readable formatting (see addReplyHumanLongDouble in networking.c).

The function always returns REDISMODULE_OK.

*Commands replication API

*RedisModule_Replicate

int RedisModule_Replicate(RedisModuleCtx *ctx,
                          const char *cmdname,
                          const char *fmt,
                          ...);

Replicate the specified command and arguments to slaves and AOF, as effect of execution of the calling command implementation.

The replicated commands are always wrapped into the MULTI/EXEC that contains all the commands replicated in a given module command execution. However the commands replicated with RedisModule_Call() are the first items, the ones replicated with RedisModule_Replicate() will all follow before the EXEC.

Modules should try to use one interface or the other.

This command follows exactly the same interface of RedisModule_Call(), so a set of format specifiers must be passed, followed by arguments matching the provided format specifiers.

Please refer to RedisModule_Call() for more information.

Using the special "A" and "R" modifiers, the caller can exclude either the AOF or the replicas from the propagation of the specified command. Otherwise, by default, the command will be propagated in both channels.

*Note about calling this function from a thread safe context:

Normally when you call this function from the callback implementing a module command, or any other callback provided by the Redis Module API, Redis will accumulate all the calls to this function in the context of the callback, and will propagate all the commands wrapped in a MULTI/EXEC transaction. However when calling this function from a threaded safe context that can live an undefined amount of time, and can be locked/unlocked in at will, the behavior is different: MULTI/EXEC wrapper is not emitted and the command specified is inserted in the AOF and replication stream immediately.

*Return value

The command returns REDISMODULE_ERR if the format specifiers are invalid or the command name does not belong to a known command.

*RedisModule_ReplicateVerbatim

int RedisModule_ReplicateVerbatim(RedisModuleCtx *ctx);

This function will replicate the command exactly as it was invoked by the client. Note that this function will not wrap the command into a MULTI/EXEC stanza, so it should not be mixed with other replication commands.

Basically this form of replication is useful when you want to propagate the command to the slaves and AOF file exactly as it was called, since the command can just be re-executed to deterministically re-create the new state starting from the old one.

The function always returns REDISMODULE_OK.

*DB and Key APIs – Generic API

*RedisModule_GetClientId

unsigned long long RedisModule_GetClientId(RedisModuleCtx *ctx);

Return the ID of the current client calling the currently active module command. The returned ID has a few guarantees:

  1. The ID is different for each different client, so if the same client executes a module command multiple times, it can be recognized as having the same ID, otherwise the ID will be different.
  2. The ID increases monotonically. Clients connecting to the server later are guaranteed to get IDs greater than any past ID previously seen.

Valid IDs are from 1 to 264 - 1. If 0 is returned it means there is no way to fetch the ID in the context the function was currently called.

After obtaining the ID, it is possible to check if the command execution is actually happening in the context of AOF loading, using this macro:

 if (RedisModule_IsAOFClient(RedisModule_GetClientId(ctx)) {
     // Handle it differently.
 }

*RedisModule_GetClientUserNameById

RedisModuleString *RedisModule_GetClientUserNameById(RedisModuleCtx *ctx,
                                                     uint64_t id);

Return the ACL user name used by the client with the specified client ID. Client ID can be obtained with RedisModule_GetClientId() API. If the client does not exist, NULL is returned and errno is set to ENOENT. If the client isn't using an ACL user, NULL is returned and errno is set to ENOTSUP

*RedisModule_GetClientInfoById

int RedisModule_GetClientInfoById(void *ci, uint64_t id);

Return information about the client with the specified ID (that was previously obtained via the RedisModule_GetClientId() API). If the client exists, REDISMODULE_OK is returned, otherwise REDISMODULE_ERR is returned.

When the client exist and the ci pointer is not NULL, but points to a structure of type RedisModuleClientInfo, previously initialized with the correct REDISMODULE_CLIENTINFO_INITIALIZER, the structure is populated with the following fields:

 uint64_t flags;         // REDISMODULE_CLIENTINFO_FLAG_*
 uint64_t id;            // Client ID
 char addr[46];          // IPv4 or IPv6 address.
 uint16_t port;          // TCP port.
 uint16_t db;            // Selected DB.

Note: the client ID is useless in the context of this call, since we already know, however the same structure could be used in other contexts where we don't know the client ID, yet the same structure is returned.

With flags having the following meaning:

REDISMODULE_CLIENTINFO_FLAG_SSL          Client using SSL connection.
REDISMODULE_CLIENTINFO_FLAG_PUBSUB       Client in Pub/Sub mode.
REDISMODULE_CLIENTINFO_FLAG_BLOCKED      Client blocked in command.
REDISMODULE_CLIENTINFO_FLAG_TRACKING     Client with keys tracking on.
REDISMODULE_CLIENTINFO_FLAG_UNIXSOCKET   Client using unix domain socket.
REDISMODULE_CLIENTINFO_FLAG_MULTI        Client in MULTI state.

However passing NULL is a way to just check if the client exists in case we are not interested in any additional information.

This is the correct usage when we want the client info structure returned:

 RedisModuleClientInfo ci = REDISMODULE_CLIENTINFO_INITIALIZER;
 int retval = RedisModule_GetClientInfoById(&ci,client_id);
 if (retval == REDISMODULE_OK) {
     printf("Address: %s\n", ci.addr);
 }

*RedisModule_PublishMessage

int RedisModule_PublishMessage(RedisModuleCtx *ctx,
                               RedisModuleString *channel,
                               RedisModuleString *message);

Publish a message to subscribers (see PUBLISH command).

*RedisModule_GetSelectedDb

int RedisModule_GetSelectedDb(RedisModuleCtx *ctx);

Return the currently selected DB.

*RedisModule_GetContextFlags

int RedisModule_GetContextFlags(RedisModuleCtx *ctx);

Return the current context's flags. The flags provide information on the current request context (whether the client is a Lua script or in a MULTI), and about the Redis instance in general, i.e replication and persistence.

It is possible to call this function even with a NULL context, however in this case the following flags will not be reported:

  • LUA, MULTI, REPLICATED, DIRTY (see below for more info).

Available flags and their meaning:

  • REDISMODULE_CTX_FLAGS_LUA: The command is running in a Lua script

  • REDISMODULE_CTX_FLAGS_MULTI: The command is running inside a transaction

  • REDISMODULE_CTX_FLAGS_REPLICATED: The command was sent over the replication link by the MASTER

  • REDISMODULE_CTX_FLAGS_MASTER: The Redis instance is a master

  • REDISMODULE_CTX_FLAGS_SLAVE: The Redis instance is a slave

  • REDISMODULE_CTX_FLAGS_READONLY: The Redis instance is read-only

  • REDISMODULE_CTX_FLAGS_CLUSTER: The Redis instance is in cluster mode

  • REDISMODULE_CTX_FLAGS_AOF: The Redis instance has AOF enabled

  • REDISMODULE_CTX_FLAGS_RDB: The instance has RDB enabled

  • REDISMODULE_CTX_FLAGS_MAXMEMORY: The instance has Maxmemory set

  • REDISMODULE_CTX_FLAGS_EVICT: Maxmemory is set and has an eviction policy that may delete keys

  • REDISMODULE_CTX_FLAGS_OOM: Redis is out of memory according to the maxmemory setting.

  • REDISMODULE_CTX_FLAGS_OOM_WARNING: Less than 25% of memory remains before reaching the maxmemory level.

  • REDISMODULE_CTX_FLAGS_LOADING: Server is loading RDB/AOF

  • REDISMODULE_CTX_FLAGS_REPLICA_IS_STALE: No active link with the master.

  • REDISMODULE_CTX_FLAGS_REPLICA_IS_CONNECTING: The replica is trying to connect with the master.

  • REDISMODULE_CTX_FLAGS_REPLICA_IS_TRANSFERRING: Master -> Replica RDB transfer is in progress.

  • REDISMODULE_CTX_FLAGS_REPLICA_IS_ONLINE: The replica has an active link with its master. This is the contrary of STALE state.

  • REDISMODULE_CTX_FLAGS_ACTIVE_CHILD: There is currently some background process active (RDB, AUX or module).

  • REDISMODULE_CTX_FLAGS_MULTI_DIRTY: The next EXEC will fail due to dirty CAS (touched keys).

  • REDISMODULE_CTX_FLAGS_IS_CHILD: Redis is currently running inside background child process.

*RedisModule_AvoidReplicaTraffic

int RedisModule_AvoidReplicaTraffic();

Returns true if some client sent the CLIENT PAUSE command to the server or if Redis Cluster is doing a manual failover, and paused tue clients. This is needed when we have a master with replicas, and want to write, without adding further data to the replication channel, that the replicas replication offset, match the one of the master. When this happens, it is safe to failover the master without data loss.

However modules may generate traffic by calling RedisModule_Call() with the "!" flag, or by calling RedisModule_Replicate(), in a context outside commands execution, for instance in timeout callbacks, threads safe contexts, and so forth. When modules will generate too much traffic, it will be hard for the master and replicas offset to match, because there is more data to send in the replication channel.

So modules may want to try to avoid very heavy background work that has the effect of creating data to the replication channel, when this function returns true. This is mostly useful for modules that have background garbage collection tasks, or that do writes and replicate such writes periodically in timer callbacks or other periodic callbacks.

*RedisModule_SelectDb

int RedisModule_SelectDb(RedisModuleCtx *ctx, int newid);

Change the currently selected DB. Returns an error if the id is out of range.

Note that the client will retain the currently selected DB even after the Redis command implemented by the module calling this function returns.

If the module command wishes to change something in a different DB and returns back to the original one, it should call RedisModule_GetSelectedDb() before in order to restore the old DB number before returning.

*RedisModule_OpenKey

void *RedisModule_OpenKey(RedisModuleCtx *ctx, robj *keyname, int mode);

Return an handle representing a Redis key, so that it is possible to call other APIs with the key handle as argument to perform operations on the key.

The return value is the handle representing the key, that must be closed with RedisModule_CloseKey().

If the key does not exist and WRITE mode is requested, the handle is still returned, since it is possible to perform operations on a yet not existing key (that will be created, for example, after a list push operation). If the mode is just READ instead, and the key does not exist, NULL is returned. However it is still safe to call RedisModule_CloseKey() and RedisModule_KeyType() on a NULL value.

*RedisModule_CloseKey

void RedisModule_CloseKey(RedisModuleKey *key);

Close a key handle.

*RedisModule_KeyType

int RedisModule_KeyType(RedisModuleKey *key);

Return the type of the key. If the key pointer is NULL then REDISMODULE_KEYTYPE_EMPTY is returned.

*RedisModule_ValueLength

size_t RedisModule_ValueLength(RedisModuleKey *key);

Return the length of the value associated with the key. For strings this is the length of the string. For all the other types is the number of elements (just counting keys for hashes).

If the key pointer is NULL or the key is empty, zero is returned.

*RedisModule_DeleteKey

int RedisModule_DeleteKey(RedisModuleKey *key);

If the key is open for writing, remove it, and setup the key to accept new writes as an empty key (that will be created on demand). On success REDISMODULE_OK is returned. If the key is not open for writing REDISMODULE_ERR is returned.

*RedisModule_UnlinkKey

int RedisModule_UnlinkKey(RedisModuleKey *key);

If the key is open for writing, unlink it (that is delete it in a non-blocking way, not reclaiming memory immediately) and setup the key to accept new writes as an empty key (that will be created on demand). On success REDISMODULE_OK is returned. If the key is not open for writing REDISMODULE_ERR is returned.

*RedisModule_GetExpire

mstime_t RedisModule_GetExpire(RedisModuleKey *key);

Return the key expire value, as milliseconds of remaining TTL. If no TTL is associated with the key or if the key is empty, REDISMODULE_NO_EXPIRE is returned.

*RedisModule_SetExpire

int RedisModule_SetExpire(RedisModuleKey *key, mstime_t expire);

Set a new expire for the key. If the special expire REDISMODULE_NO_EXPIRE is set, the expire is cancelled if there was one (the same as the PERSIST command).

Note that the expire must be provided as a positive integer representing the number of milliseconds of TTL the key should have.

The function returns REDISMODULE_OK on success or REDISMODULE_ERR if the key was not open for writing or is an empty key.

*RedisModule_GetAbsExpire

mstime_t RedisModule_GetAbsExpire(RedisModuleKey *key);

Return the key expire value, as absolute Unix timestamp. If no TTL is associated with the key or if the key is empty, REDISMODULE_NO_EXPIRE is returned.

*RedisModule_SetAbsExpire

int RedisModule_SetAbsExpire(RedisModuleKey *key, mstime_t expire);

Set a new expire for the key. If the special expire REDISMODULE_NO_EXPIRE is set, the expire is cancelled if there was one (the same as the PERSIST command).

Note that the expire must be provided as a positive integer representing the absolute Unix timestamp the key should have.

The function returns REDISMODULE_OK on success or REDISMODULE_ERR if the key was not open for writing or is an empty key.

*RedisModule_ResetDataset

void RedisModule_ResetDataset(int restart_aof, int async);

Performs similar operation to FLUSHALL, and optionally start a new AOF file (if enabled) If restart_aof is true, you must make sure the command that triggered this call is not propagated to the AOF file. When async is set to true, db contents will be freed by a background thread.

*RedisModule_DbSize

unsigned long long RedisModule_DbSize(RedisModuleCtx *ctx);

Returns the number of keys in the current db.

*RedisModule_RandomKey

RedisModuleString *RedisModule_RandomKey(RedisModuleCtx *ctx);

Returns a name of a random key, or NULL if current db is empty.

*Key API for String type

See also RedisModule_ValueLength(), which returns the length of a string.

*RedisModule_StringSet

int RedisModule_StringSet(RedisModuleKey *key, RedisModuleString *str);

If the key is open for writing, set the specified string 'str' as the value of the key, deleting the old value if any. On success REDISMODULE_OK is returned. If the key is not open for writing or there is an active iterator, REDISMODULE_ERR is returned.

*RedisModule_StringDMA

char *RedisModule_StringDMA(RedisModuleKey *key, size_t *len, int mode);

Prepare the key associated string value for DMA access, and returns a pointer and size (by reference), that the user can use to read or modify the string in-place accessing it directly via pointer.

The 'mode' is composed by bitwise OR-ing the following flags:

REDISMODULE_READ -- Read access
REDISMODULE_WRITE -- Write access

If the DMA is not requested for writing, the pointer returned should only be accessed in a read-only fashion.

On error (wrong type) NULL is returned.

DMA access rules:

  1. No other key writing function should be called since the moment the pointer is obtained, for all the time we want to use DMA access to read or modify the string.

  2. Each time RedisModule_StringTruncate() is called, to continue with the DMA access, RedisModule_StringDMA() should be called again to re-obtain a new pointer and length.

  3. If the returned pointer is not NULL, but the length is zero, no byte can be touched (the string is empty, or the key itself is empty) so a RedisModule_StringTruncate() call should be used if there is to enlarge the string, and later call StringDMA() again to get the pointer.

*RedisModule_StringTruncate

int RedisModule_StringTruncate(RedisModuleKey *key, size_t newlen);

If the string is open for writing and is of string type, resize it, padding with zero bytes if the new length is greater than the old one.

After this call, RedisModule_StringDMA() must be called again to continue DMA access with the new pointer.

The function returns REDISMODULE_OK on success, and REDISMODULE_ERR on error, that is, the key is not open for writing, is not a string or resizing for more than 512 MB is requested.

If the key is empty, a string key is created with the new string value unless the new length value requested is zero.

*Key API for List type

See also RedisModule_ValueLength(), which returns the length of a list.

*RedisModule_ListPush

int RedisModule_ListPush(RedisModuleKey *key,
                         int where,
                         RedisModuleString *ele);

Push an element into a list, on head or tail depending on 'where' argument. If the key pointer is about an empty key opened for writing, the key is created. On error (key opened for read-only operations or of the wrong type) REDISMODULE_ERR is returned, otherwise REDISMODULE_OK is returned.

*RedisModule_ListPop

RedisModuleString *RedisModule_ListPop(RedisModuleKey *key, int where);

Pop an element from the list, and returns it as a module string object that the user should be free with RedisModule_FreeString() or by enabling automatic memory. 'where' specifies if the element should be popped from head or tail. The command returns NULL if:

  1. The list is empty.
  2. The key was not open for writing.
  3. The key is not a list.

*Key API for Sorted Set type

See also RedisModule_ValueLength(), which returns the length of a sorted set.

*RedisModule_ZsetAdd

int RedisModule_ZsetAdd(RedisModuleKey *key,
                        double score,
                        RedisModuleString *ele,
                        int *flagsptr);

Add a new element into a sorted set, with the specified 'score'. If the element already exists, the score is updated.

A new sorted set is created at value if the key is an empty open key setup for writing.

Additional flags can be passed to the function via a pointer, the flags are both used to receive input and to communicate state when the function returns. 'flagsptr' can be NULL if no special flags are used.

The input flags are:

REDISMODULE_ZADD_XX: Element must already exist. Do nothing otherwise.
REDISMODULE_ZADD_NX: Element must not exist. Do nothing otherwise.
REDISMODULE_ZADD_GT: If element exists, new score must be greater than the current score. 
                     Do nothing otherwise. Can optionally be combined with XX.
REDISMODULE_ZADD_LT: If element exists, new score must be less than the current score.
                     Do nothing otherwise. Can optionally be combined with XX.

The output flags are:

REDISMODULE_ZADD_ADDED: The new element was added to the sorted set.
REDISMODULE_ZADD_UPDATED: The score of the element was updated.
REDISMODULE_ZADD_NOP: No operation was performed because XX or NX flags.

On success the function returns REDISMODULE_OK. On the following errors REDISMODULE_ERR is returned:

  • The key was not opened for writing.
  • The key is of the wrong type.
  • 'score' double value is not a number (NaN).

*RedisModule_ZsetIncrby

int RedisModule_ZsetIncrby(RedisModuleKey *key,
                           double score,
                           RedisModuleString *ele,
                           int *flagsptr,
                           double *newscore);

This function works exactly like RedisModule_ZsetAdd(), but instead of setting a new score, the score of the existing element is incremented, or if the element does not already exist, it is added assuming the old score was zero.

The input and output flags, and the return value, have the same exact meaning, with the only difference that this function will return REDISMODULE_ERR even when 'score' is a valid double number, but adding it to the existing score results into a NaN (not a number) condition.

This function has an additional field 'newscore', if not NULL is filled with the new score of the element after the increment, if no error is returned.

*RedisModule_ZsetRem

int RedisModule_ZsetRem(RedisModuleKey *key,
                        RedisModuleString *ele,
                        int *deleted);

Remove the specified element from the sorted set. The function returns REDISMODULE_OK on success, and REDISMODULE_ERR on one of the following conditions:

  • The key was not opened for writing.
  • The key is of the wrong type.

The return value does NOT indicate the fact the element was really removed (since it existed) or not, just if the function was executed with success.

In order to know if the element was removed, the additional argument 'deleted' must be passed, that populates the integer by reference setting it to 1 or 0 depending on the outcome of the operation. The 'deleted' argument can be NULL if the caller is not interested to know if the element was really removed.

Empty keys will be handled correctly by doing nothing.

*RedisModule_ZsetScore

int RedisModule_ZsetScore(RedisModuleKey *key,
                          RedisModuleString *ele,
                          double *score);

On success retrieve the double score associated at the sorted set element 'ele' and returns REDISMODULE_OK. Otherwise REDISMODULE_ERR is returned to signal one of the following conditions:

  • There is no such element 'ele' in the sorted set.
  • The key is not a sorted set.
  • The key is an open empty key.

*Key API for Sorted Set iterator

*RedisModule_ZsetRangeStop

void RedisModule_ZsetRangeStop(RedisModuleKey *key);

Stop a sorted set iteration.

*RedisModule_ZsetRangeEndReached

int RedisModule_ZsetRangeEndReached(RedisModuleKey *key);

Return the "End of range" flag value to signal the end of the iteration.

*RedisModule_ZsetFirstInScoreRange

int RedisModule_ZsetFirstInScoreRange(RedisModuleKey *key,
                                      double min,
                                      double max,
                                      int minex,
                                      int maxex);

Setup a sorted set iterator seeking the first element in the specified range. Returns REDISMODULE_OK if the iterator was correctly initialized otherwise REDISMODULE_ERR is returned in the following conditions:

  1. The value stored at key is not a sorted set or the key is empty.

The range is specified according to the two double values 'min' and 'max'. Both can be infinite using the following two macros:

  • REDISMODULE_POSITIVE_INFINITE for positive infinite value
  • REDISMODULE_NEGATIVE_INFINITE for negative infinite value

'minex' and 'maxex' parameters, if true, respectively setup a range where the min and max value are exclusive (not included) instead of inclusive.

*RedisModule_ZsetLastInScoreRange

int RedisModule_ZsetLastInScoreRange(RedisModuleKey *key,
                                     double min,
                                     double max,
                                     int minex,
                                     int maxex);

Exactly like RedisModule_ZsetFirstInScoreRange() but the last element of the range is selected for the start of the iteration instead.

*RedisModule_ZsetFirstInLexRange

int RedisModule_ZsetFirstInLexRange(RedisModuleKey *key,
                                    RedisModuleString *min,
                                    RedisModuleString *max);

Setup a sorted set iterator seeking the first element in the specified lexicographical range. Returns REDISMODULE_OK if the iterator was correctly initialized otherwise REDISMODULE_ERR is returned in the following conditions:

  1. The value stored at key is not a sorted set or the key is empty.
  2. The lexicographical range 'min' and 'max' format is invalid.

'min' and 'max' should be provided as two RedisModuleString objects in the same format as the parameters passed to the ZRANGEBYLEX command. The function does not take ownership of the objects, so they can be released ASAP after the iterator is setup.

*RedisModule_ZsetLastInLexRange

int RedisModule_ZsetLastInLexRange(RedisModuleKey *key,
                                   RedisModuleString *min,
                                   RedisModuleString *max);

Exactly like RedisModule_ZsetFirstInLexRange() but the last element of the range is selected for the start of the iteration instead.

*RedisModule_ZsetRangeCurrentElement

RedisModuleString *RedisModule_ZsetRangeCurrentElement(RedisModuleKey *key,
                                                       double *score);

Return the current sorted set element of an active sorted set iterator or NULL if the range specified in the iterator does not include any element.

*RedisModule_ZsetRangeNext

int RedisModule_ZsetRangeNext(RedisModuleKey *key);

Go to the next element of the sorted set iterator. Returns 1 if there was a next element, 0 if we are already at the latest element or the range does not include any item at all.

*RedisModule_ZsetRangePrev

int RedisModule_ZsetRangePrev(RedisModuleKey *key);

Go to the previous element of the sorted set iterator. Returns 1 if there was a previous element, 0 if we are already at the first element or the range does not include any item at all.

*Key API for Hash type

See also RedisModule_ValueLength(), which returns the number of fields in a hash.

*RedisModule_HashSet

int RedisModule_HashSet(RedisModuleKey *key, int flags, ...);

Set the field of the specified hash field to the specified value. If the key is an empty key open for writing, it is created with an empty hash value, in order to set the specified field.

The function is variadic and the user must specify pairs of field names and values, both as RedisModuleString pointers (unless the CFIELD option is set, see later). At the end of the field/value-ptr pairs, NULL must be specified as last argument to signal the end of the arguments in the variadic function.

Example to set the hash argv[1] to the value argv[2]:

 RedisModule_HashSet(key,REDISMODULE_HASH_NONE,argv[1],argv[2],NULL);

The function can also be used in order to delete fields (if they exist) by setting them to the specified value of REDISMODULE_HASH_DELETE:

 RedisModule_HashSet(key,REDISMODULE_HASH_NONE,argv[1],
                     REDISMODULE_HASH_DELETE,NULL);

The behavior of the command changes with the specified flags, that can be set to REDISMODULE_HASH_NONE if no special behavior is needed.

REDISMODULE_HASH_NX: The operation is performed only if the field was not
                     already existing in the hash.
REDISMODULE_HASH_XX: The operation is performed only if the field was
                     already existing, so that a new value could be
                     associated to an existing filed, but no new fields
                     are created.
REDISMODULE_HASH_CFIELDS: The field names passed are null terminated C
                          strings instead of RedisModuleString objects.
REDISMODULE_HASH_COUNT_ALL: Include the number of inserted fields in the
                            returned number, in addition to the number of
                            updated and deleted fields. (Added in Redis
                            6.2.)

Unless NX is specified, the command overwrites the old field value with the new one.

When using REDISMODULE_HASH_CFIELDS, field names are reported using normal C strings, so for example to delete the field "foo" the following code can be used:

 RedisModule_HashSet(key,REDISMODULE_HASH_CFIELDS,"foo",
                     REDISMODULE_HASH_DELETE,NULL);

Return value:

The number of fields existing in the hash prior to the call, which have been updated (its old value has been replaced by a new value) or deleted. If the flag REDISMODULE_HASH_COUNT_ALL is set, insterted fields not previously existing in the hash are also counted.

If the return value is zero, errno is set (since Redis 6.2) as follows:

  • EINVAL if any unknown flags are set or if key is NULL.
  • ENOTSUP if the key is associated with a non Hash value.
  • EBADF if the key was not opened for writing.
  • ENOENT if no fields were counted as described under Return value above. This is not actually an error. The return value can be zero if all fields were just created and the COUNT_ALL flag was unset, or if changes were held back due to the NX and XX flags.

NOTICE: The return value semantics of this function are very different between Redis 6.2 and older versions. Modules that use it should determine the Redis version and handle it accordingly.

*RedisModule_HashGet

int RedisModule_HashGet(RedisModuleKey *key, int flags, ...);

Get fields from an hash value. This function is called using a variable number of arguments, alternating a field name (as a RedisModuleString pointer) with a pointer to a RedisModuleString pointer, that is set to the value of the field if the field exists, or NULL if the field does not exist. At the end of the field/value-ptr pairs, NULL must be specified as last argument to signal the end of the arguments in the variadic function.

This is an example usage:

 RedisModuleString *first, *second;
 RedisModule_HashGet(mykey,REDISMODULE_HASH_NONE,argv[1],&first,
                     argv[2],&second,NULL);

As with RedisModule_HashSet() the behavior of the command can be specified passing flags different than REDISMODULE_HASH_NONE:

REDISMODULE_HASH_CFIELDS: field names as null terminated C strings.

REDISMODULE_HASH_EXISTS: instead of setting the value of the field expecting a RedisModuleString pointer to pointer, the function just reports if the field exists or not and expects an integer pointer as the second element of each pair.

Example of REDISMODULE_HASH_CFIELDS:

 RedisModuleString *username, *hashedpass;
 RedisModule_HashGet(mykey,REDISMODULE_HASH_CFIELDS,"username",&username,"hp",&hashedpass, NULL);

Example of REDISMODULE_HASH_EXISTS:

 int exists;
 RedisModule_HashGet(mykey,REDISMODULE_HASH_EXISTS,argv[1],&exists,NULL);

The function returns REDISMODULE_OK on success and REDISMODULE_ERR if the key is not an hash value.

Memory management:

The returned RedisModuleString objects should be released with RedisModule_FreeString(), or by enabling automatic memory management.

*Key API for Stream type

For an introduction to streams, see https://redis.io/topics/streams-intro.

The type RedisModuleStreamID, which is used in stream functions, is a struct with two 64-bit fields and is defined as

typedef struct RedisModuleStreamID {
    uint64_t ms;
    uint64_t seq;
} RedisModuleStreamID;

See also RedisModule_ValueLength(), which returns the length of a stream, and the conversion functions RedisModule_StringToStreamID() and RedisModule_CreateStringFromStreamID().

*RedisModule_StreamAdd

int RedisModule_StreamAdd(RedisModuleKey *key,
                          int flags,
                          RedisModuleStreamID *id,
                          RedisModuleString **argv,
                          long numfields);

Adds an entry to a stream. Like XADD without trimming.

  • key: The key where the stream is (or will be) stored
  • flags: A bit field of
    • REDISMODULE_STREAM_ADD_AUTOID: Assign a stream ID automatically, like * in the XADD command.
  • id: If the AUTOID flag is set, this is where the assigned ID is returned. Can be NULL if AUTOID is set, if you don't care to receive the ID. If AUTOID is not set, this is the requested ID.
  • argv: A pointer to an array of size numfields * 2 containing the fields and values.
  • numfields: The number of field-value pairs in argv.

Returns REDISMODULE_OK if an entry has been added. On failure, REDISMODULE_ERR is returned and errno is set as follows:

  • EINVAL if called with invalid arguments
  • ENOTSUP if the key refers to a value of a type other than stream
  • EBADF if the key was not opened for writing
  • EDOM if the given ID was 0-0 or not greater than all other IDs in the stream (only if the AUTOID flag is unset)
  • EFBIG if the stream has reached the last possible ID

*RedisModule_StreamDelete

int RedisModule_StreamDelete(RedisModuleKey *key, RedisModuleStreamID *id);

Deletes an entry from a stream.

  • key: A key opened for writing, with no stream iterator started.
  • id: The stream ID of the entry to delete.

Returns REDISMODULE_OK on success. On failure, REDISMODULE_ERR is returned and errno is set as follows:

  • EINVAL if called with invalid arguments
  • ENOTSUP if the key refers to a value of a type other than stream or if the key is empty
  • EBADF if the key was not opened for writing or if a stream iterator is associated with the key
  • ENOENT if no entry with the given stream ID exists

See also RedisModule_StreamIteratorDelete() for deleting the current entry while iterating using a stream iterator.

*RedisModule_StreamIteratorStart

int RedisModule_StreamIteratorStart(RedisModuleKey *key,
                                    int flags,
                                    RedisModuleStreamID *start,
                                    RedisModuleStreamID *end);

Sets up a stream iterator.

  • key: The stream key opened for reading using RedisModule_OpenKey().
  • flags:
    • REDISMODULE_STREAM_ITERATOR_EXCLUSIVE: Don't include start and end in the iterated range.
    • REDISMODULE_STREAM_ITERATOR_REVERSE: Iterate in reverse order, starting from the end of the range.
  • start: The lower bound of the range. Use NULL for the beginning of the stream.
  • end: The upper bound of the range. Use NULL for the end of the stream.

Returns REDISMODULE_OK on success. On failure, REDISMODULE_ERR is returned and errno is set as follows:

  • EINVAL if called with invalid arguments
  • ENOTSUP if the key refers to a value of a type other than stream or if the key is empty
  • EBADF if the key was not opened for writing or if a stream iterator is already associated with the key
  • EDOM if start or end is outside the valid range

Returns REDISMODULE_OK on success and REDISMODULE_ERR if the key doesn't refer to a stream or if invalid arguments were given.

The stream IDs are retrieved using RedisModule_StreamIteratorNextID() and for each stream ID, the fields and values are retrieved using RedisModule_StreamIteratorNextField(). The iterator is freed by calling RedisModule_StreamIteratorStop().

Example (error handling omitted):

RedisModule_StreamIteratorStart(key, 0, startid_ptr, endid_ptr);
RedisModuleStreamID id;
long numfields;
while (RedisModule_StreamIteratorNextID(key, &id, &numfields) ==
       REDISMODULE_OK) {
    RedisModuleString *field, *value;
    while (RedisModule_StreamIteratorNextField(key, &field, &value) ==
           REDISMODULE_OK) {
        //
        // ... Do stuff ...
        //
        RedisModule_FreeString(ctx, field);
        RedisModule_FreeString(ctx, value);
    }
}
RedisModule_StreamIteratorStop(key);

*RedisModule_StreamIteratorStop

int RedisModule_StreamIteratorStop(RedisModuleKey *key);

Stops a stream iterator created using RedisModule_StreamIteratorStart() and reclaims its memory.

Returns REDISMODULE_OK on success. On failure, REDISMODULE_ERR is returned and errno is set as follows:

  • EINVAL if called with a NULL key
  • ENOTSUP if the key refers to a value of a type other than stream or if the key is empty
  • EBADF if the key was not opened for writing or if no stream iterator is associated with the key

*RedisModule_StreamIteratorNextID

int RedisModule_StreamIteratorNextID(RedisModuleKey *key,
                                     RedisModuleStreamID *id,
                                     long *numfields);

Finds the next stream entry and returns its stream ID and the number of fields.

  • key: Key for which a stream iterator has been started using RedisModule_StreamIteratorStart().
  • id: The stream ID returned. NULL if you don't care.
  • numfields: The number of fields in the found stream entry. NULL if you don't care.

Returns REDISMODULE_OK and sets *id and *numfields if an entry was found. On failure, REDISMODULE_ERR is returned and errno is set as follows:

  • EINVAL if called with a NULL key
  • ENOTSUP if the key refers to a value of a type other than stream or if the key is empty
  • EBADF if no stream iterator is associated with the key
  • ENOENT if there are no more entries in the range of the iterator

In practice, if RedisModule_StreamIteratorNextID() is called after a successful call to RedisModule_StreamIteratorStart() and with the same key, it is safe to assume that an REDISMODULE_ERR return value means that there are no more entries.

Use RedisModule_StreamIteratorNextField() to retrieve the fields and values. See the example at RedisModule_StreamIteratorStart().

*RedisModule_StreamIteratorNextField

int RedisModule_StreamIteratorNextField(RedisModuleKey *key,
                                        RedisModuleString **field_ptr,
                                        RedisModuleString **value_ptr);

Retrieves the next field of the current stream ID and its corresponding value in a stream iteration. This function should be called repeatedly after calling RedisModule_StreamIteratorNextID() to fetch each field-value pair.

  • key: Key where a stream iterator has been started.
  • field_ptr: This is where the field is returned.
  • value_ptr: This is where the value is returned.

Returns REDISMODULE_OK and points *field_ptr and *value_ptr to freshly allocated RedisModuleString objects. The string objects are freed automatically when the callback finishes if automatic memory is enabled. On failure, REDISMODULE_ERR is returned and errno is set as follows:

  • EINVAL if called with a NULL key
  • ENOTSUP if the key refers to a value of a type other than stream or if the key is empty
  • EBADF if no stream iterator is associated with the key
  • ENOENT if there are no more fields in the current stream entry

In practice, if RedisModule_StreamIteratorNextField() is called after a successful call to RedisModule_StreamIteratorNextID() and with the same key, it is safe to assume that an REDISMODULE_ERR return value means that there are no more fields.

See the example at RedisModule_StreamIteratorStart().

*RedisModule_StreamIteratorDelete

int RedisModule_StreamIteratorDelete(RedisModuleKey *key);

Deletes the current stream entry while iterating.

This function can be called after RedisModule_StreamIteratorNextID() or after any calls to RedisModule_StreamIteratorNextField().

Returns REDISMODULE_OK on success. On failure, REDISMODULE_ERR is returned and errno is set as follows:

  • EINVAL if key is NULL
  • ENOTSUP if the key is empty or is of another type than stream
  • EBADF if the key is not opened for writing, if no iterator has been started
  • ENOENT if the iterator has no current stream entry

*RedisModule_StreamTrimByLength

long long RedisModule_StreamTrimByLength(RedisModuleKey *key,
                                         int flags,
                                         long long length);

Trim a stream by length, similar to XTRIM with MAXLEN.

  • key: Key opened for writing.
  • flags: A bitfield of
    • REDISMODULE_STREAM_TRIM_APPROX: Trim less if it improves performance, like XTRIM with ~.
  • length: The number of stream entries to keep after trimming.

Returns the number of entries deleted. On failure, a negative value is returned and errno is set as follows:

  • EINVAL if called with invalid arguments
  • ENOTSUP if the key is empty or of a type other than stream
  • EBADF if the key is not opened for writing

*RedisModule_StreamTrimByID

long long RedisModule_StreamTrimByID(RedisModuleKey *key,
                                     int flags,
                                     RedisModuleStreamID *id);

Trim a stream by ID, similar to XTRIM with MINID.

  • key: Key opened for writing.
  • flags: A bitfield of
    • REDISMODULE_STREAM_TRIM_APPROX: Trim less if it improves performance, like XTRIM with ~.
  • id: The smallest stream ID to keep after trimming.

Returns the number of entries deleted. On failure, a negative value is returned and errno is set as follows:

  • EINVAL if called with invalid arguments
  • ENOTSUP if the key is empty or of a type other than stream
  • EBADF if the key is not opened for writing

*Calling Redis commands from modules

RedisModule_Call() sends a command to Redis. The remaining functions handle the reply.

*RedisModule_FreeCallReply

void RedisModule_FreeCallReply(RedisModuleCallReply *reply);

Free a Call reply and all the nested replies it contains if it's an array.

*RedisModule_CallReplyType

int RedisModule_CallReplyType(RedisModuleCallReply *reply);

Return the reply type.

*RedisModule_CallReplyLength

size_t RedisModule_CallReplyLength(RedisModuleCallReply *reply);

Return the reply type length, where applicable.

*RedisModule_CallReplyArrayElement

RedisModuleCallReply *RedisModule_CallReplyArrayElement(RedisModuleCallReply *reply,
                                                        size_t idx);

Return the 'idx'-th nested call reply element of an array reply, or NULL if the reply type is wrong or the index is out of range.

*RedisModule_CallReplyInteger

long long RedisModule_CallReplyInteger(RedisModuleCallReply *reply);

Return the long long of an integer reply.

*RedisModule_CallReplyStringPtr

const char *RedisModule_CallReplyStringPtr(RedisModuleCallReply *reply,
                                           size_t *len);

Return the pointer and length of a string or error reply.

*RedisModule_CreateStringFromCallReply

RedisModuleString *RedisModule_CreateStringFromCallReply(RedisModuleCallReply *reply);

Return a new string object from a call reply of type string, error or integer. Otherwise (wrong reply type) return NULL.

*RedisModule_Call

RedisModuleCallReply *RedisModule_Call(RedisModuleCtx *ctx,
                                       const char *cmdname,
                                       const char *fmt,
                                       ...);

Exported API to call any Redis command from modules.

  • cmdname: The Redis command to call.
  • fmt: A format specifier string for the command's arguments. Each of the arguments should be specified by a valid type specification. The format specifier can also contain the modifiers !, A and R which don't have a corresponding argument.

    • b -- The argument is a buffer and is immediately followed by another argument that is the buffer's length.
    • c -- The argument is a pointer to a plain C string (null-terminated).
    • l -- The argument is long long integer.
    • s -- The argument is a RedisModuleString.
    • v -- The argument(s) is a vector of RedisModuleString.
    • ! -- Sends the Redis command and its arguments to replicas and AOF.
    • A -- Suppress AOF propagation, send only to replicas (requires !).
    • R -- Suppress replicas propagation, send only to AOF (requires !).
  • ...: The actual arguments to the Redis command.

On success a RedisModuleCallReply object is returned, otherwise NULL is returned and errno is set to the following values:

  • EBADF: wrong format specifier.
  • EINVAL: wrong command arity.
  • ENOENT: command does not exist.
  • EPERM: operation in Cluster instance with key in non local slot.
  • EROFS: operation in Cluster instance when a write command is sent in a readonly state.
  • ENETDOWN: operation in Cluster instance when cluster is down.

Example code fragment:

 reply = RedisModule_Call(ctx,"INCRBY","sc",argv[1],"10");
 if (RedisModule_CallReplyType(reply) == REDISMODULE_REPLY_INTEGER) {
   long long myval = RedisModule_CallReplyInteger(reply);
   // Do something with myval.
 }

This API is documented here: https://redis.io/topics/modules-intro

*RedisModule_CallReplyProto

const char *RedisModule_CallReplyProto(RedisModuleCallReply *reply,
                                       size_t *len);

Return a pointer, and a length, to the protocol returned by the command that returned the reply object.

*Modules data types

When String DMA or using existing data structures is not enough, it is possible to create new data types from scratch and export them to Redis. The module must provide a set of callbacks for handling the new values exported (for example in order to provide RDB saving/loading, AOF rewrite, and so forth). In this section we define this API.

*RedisModule_CreateDataType

moduleType *RedisModule_CreateDataType(RedisModuleCtx *ctx,
                                       const char *name,
                                       int encver,
                                       void *typemethods_ptr);

Register a new data type exported by the module. The parameters are the following. Please for in depth documentation check the modules API documentation, especially https://redis.io/topics/modules-native-types.

  • name: A 9 characters data type name that MUST be unique in the Redis Modules ecosystem. Be creative... and there will be no collisions. Use the charset A-Z a-z 9-0, plus the two "-_" characters. A good idea is to use, for example <typename>-<vendor>. For example "tree-AntZ" may mean "Tree data structure by @antirez". To use both lower case and upper case letters helps in order to prevent collisions.
  • encver: Encoding version, which is, the version of the serialization that a module used in order to persist data. As long as the "name" matches, the RDB loading will be dispatched to the type callbacks whatever 'encver' is used, however the module can understand if the encoding it must load are of an older version of the module. For example the module "tree-AntZ" initially used encver=0. Later after an upgrade, it started to serialize data in a different format and to register the type with encver=1. However this module may still load old data produced by an older version if the rdb_load callback is able to check the encver value and act accordingly. The encver must be a positive value between 0 and 1023.

  • typemethods_ptr is a pointer to a RedisModuleTypeMethods structure that should be populated with the methods callbacks and structure version, like in the following example:

    RedisModuleTypeMethods tm = {
        .version = REDISMODULE_TYPE_METHOD_VERSION,
        .rdb_load = myType_RDBLoadCallBack,
        .rdb_save = myType_RDBSaveCallBack,
        .aof_rewrite = myType_AOFRewriteCallBack,
        .free = myType_FreeCallBack,
    
        // Optional fields
        .digest = myType_DigestCallBack,
        .mem_usage = myType_MemUsageCallBack,
        .aux_load = myType_AuxRDBLoadCallBack,
        .aux_save = myType_AuxRDBSaveCallBack,
        .free_effort = myType_FreeEffortCallBack,
        .unlink = myType_UnlinkCallBack,
        .copy = myType_CopyCallback,
        .defrag = myType_DefragCallback
    }
    
  • rdb_load: A callback function pointer that loads data from RDB files.

  • rdb_save: A callback function pointer that saves data to RDB files.

  • aof_rewrite: A callback function pointer that rewrites data as commands.

  • digest: A callback function pointer that is used for DEBUG DIGEST.

  • free: A callback function pointer that can free a type value.

  • aux_save: A callback function pointer that saves out of keyspace data to RDB files. 'when' argument is either REDISMODULE_AUX_BEFORE_RDB or REDISMODULE_AUX_AFTER_RDB.

  • aux_load: A callback function pointer that loads out of keyspace data from RDB files. Similar to aux_save, returns REDISMODULE_OK on success, and ERR otherwise.

  • free_effort: A callback function pointer that used to determine whether the module's memory needs to be lazy reclaimed. The module should return the complexity involved by freeing the value. for example: how many pointers are gonna be freed. Note that if it returns 0, we'll always do an async free.

  • unlink: A callback function pointer that used to notifies the module that the key has been removed from the DB by redis, and may soon be freed by a background thread. Note that it won't be called on FLUSHALL/FLUSHDB (both sync and async), and the module can use the RedisModuleEvent_FlushDB to hook into that.

  • copy: A callback function pointer that is used to make a copy of the specified key. The module is expected to perform a deep copy of the specified value and return it. In addition, hints about the names of the source and destination keys is provided. A NULL return value is considered an error and the copy operation fails. Note: if the target key exists and is being overwritten, the copy callback will be called first, followed by a free callback to the value that is being replaced.

  • defrag: A callback function pointer that is used to request the module to defrag a key. The module should then iterate pointers and call the relevant RedisModule_Defrag*() functions to defragment pointers or complex types. The module should continue iterating as long as RedisModule_DefragShouldStop() returns a zero value, and return a zero value if finished or non-zero value if more work is left to be done. If more work needs to be done, RedisModule_DefragCursorSet() and RedisModule_DefragCursorGet() can be used to track this work across different calls. Normally, the defrag mechanism invokes the callback without a time limit, so RedisModule_DefragShouldStop() always returns zero. The "late defrag" mechanism which has a time limit and provides cursor support is used only for keys that are determined to have significant internal complexity. To determine this, the defrag mechanism uses the free_effort callback and the 'active-defrag-max-scan-fields' config directive. NOTE: The value is passed as a void** and the function is expected to update the pointer if the top-level value pointer is defragmented and consequentially changes.

Note: the module name "AAAAAAAAA" is reserved and produces an error, it happens to be pretty lame as well.

If there is already a module registering a type with the same name, and if the module name or encver is invalid, NULL is returned. Otherwise the new type is registered into Redis, and a reference of type RedisModuleType is returned: the caller of the function should store this reference into a global variable to make future use of it in the modules type API, since a single module may register multiple types. Example code fragment:

 static RedisModuleType *BalancedTreeType;

 int RedisModule_OnLoad(RedisModuleCtx *ctx) {
     // some code here ...
     BalancedTreeType = RM_CreateDataType(...);
 }

*RedisModule_ModuleTypeSetValue

int RedisModule_ModuleTypeSetValue(RedisModuleKey *key,
                                   moduleType *mt,
                                   void *value);

If the key is open for writing, set the specified module type object as the value of the key, deleting the old value if any. On success REDISMODULE_OK is returned. If the key is not open for writing or there is an active iterator, REDISMODULE_ERR is returned.

*RedisModule_ModuleTypeGetType

moduleType *RedisModule_ModuleTypeGetType(RedisModuleKey *key);

Assuming RedisModule_KeyType() returned REDISMODULE_KEYTYPE_MODULE on the key, returns the module type pointer of the value stored at key.

If the key is NULL, is not associated with a module type, or is empty, then NULL is returned instead.

*RedisModule_ModuleTypeGetValue

void *RedisModule_ModuleTypeGetValue(RedisModuleKey *key);

Assuming RedisModule_KeyType() returned REDISMODULE_KEYTYPE_MODULE on the key, returns the module type low-level value stored at key, as it was set by the user via RedisModule_ModuleTypeSetValue().

If the key is NULL, is not associated with a module type, or is empty, then NULL is returned instead.

*RDB loading and saving functions

*RedisModule_IsIOError

int RedisModule_IsIOError(RedisModuleIO *io);

Returns true if any previous IO API failed. for Load* APIs the REDISMODULE_OPTIONS_HANDLE_IO_ERRORS flag must be set with RedisModule_SetModuleOptions first.

*RedisModule_SaveUnsigned

void RedisModule_SaveUnsigned(RedisModuleIO *io, uint64_t value);

Save an unsigned 64 bit value into the RDB file. This function should only be called in the context of the rdb_save method of modules implementing new data types.

*RedisModule_LoadUnsigned

uint64_t RedisModule_LoadUnsigned(RedisModuleIO *io);

Load an unsigned 64 bit value from the RDB file. This function should only be called in the context of the rdb_load method of modules implementing new data types.

*RedisModule_SaveSigned

void RedisModule_SaveSigned(RedisModuleIO *io, int64_t value);

Like RedisModule_SaveUnsigned() but for signed 64 bit values.

*RedisModule_LoadSigned

int64_t RedisModule_LoadSigned(RedisModuleIO *io);

Like RedisModule_LoadUnsigned() but for signed 64 bit values.

*RedisModule_SaveString

void RedisModule_SaveString(RedisModuleIO *io, RedisModuleString *s);

In the context of the rdb_save method of a module type, saves a string into the RDB file taking as input a RedisModuleString.

The string can be later loaded with RedisModule_LoadString() or other Load family functions expecting a serialized string inside the RDB file.

*RedisModule_SaveStringBuffer

void RedisModule_SaveStringBuffer(RedisModuleIO *io,
                                  const char *str,
                                  size_t len);

Like RedisModule_SaveString() but takes a raw C pointer and length as input.

*RedisModule_LoadString

RedisModuleString *RedisModule_LoadString(RedisModuleIO *io);

In the context of the rdb_load method of a module data type, loads a string from the RDB file, that was previously saved with RedisModule_SaveString() functions family.

The returned string is a newly allocated RedisModuleString object, and the user should at some point free it with a call to RedisModule_FreeString().

If the data structure does not store strings as RedisModuleString objects, the similar function RedisModule_LoadStringBuffer() could be used instead.

*RedisModule_LoadStringBuffer

char *RedisModule_LoadStringBuffer(RedisModuleIO *io, size_t *lenptr);

Like RedisModule_LoadString() but returns an heap allocated string that was allocated with RedisModule_Alloc(), and can be resized or freed with RedisModule_Realloc() or RedisModule_Free().

The size of the string is stored at '*lenptr' if not NULL. The returned string is not automatically NULL terminated, it is loaded exactly as it was stored inside the RDB file.

*RedisModule_SaveDouble

void RedisModule_SaveDouble(RedisModuleIO *io, double value);

In the context of the rdb_save method of a module data type, saves a double value to the RDB file. The double can be a valid number, a NaN or infinity. It is possible to load back the value with RedisModule_LoadDouble().

*RedisModule_LoadDouble

double RedisModule_LoadDouble(RedisModuleIO *io);

In the context of the rdb_save method of a module data type, loads back the double value saved by RedisModule_SaveDouble().

*RedisModule_SaveFloat

void RedisModule_SaveFloat(RedisModuleIO *io, float value);

In the context of the rdb_save method of a module data type, saves a float value to the RDB file. The float can be a valid number, a NaN or infinity. It is possible to load back the value with RedisModule_LoadFloat().

*RedisModule_LoadFloat

float RedisModule_LoadFloat(RedisModuleIO *io);

In the context of the rdb_save method of a module data type, loads back the float value saved by RedisModule_SaveFloat().

*RedisModule_SaveLongDouble

void RedisModule_SaveLongDouble(RedisModuleIO *io, long double value);

In the context of the rdb_save method of a module data type, saves a long double value to the RDB file. The double can be a valid number, a NaN or infinity. It is possible to load back the value with RedisModule_LoadLongDouble().

*RedisModule_LoadLongDouble

long double RedisModule_LoadLongDouble(RedisModuleIO *io);

In the context of the rdb_save method of a module data type, loads back the long double value saved by RedisModule_SaveLongDouble().

*Key digest API (DEBUG DIGEST interface for modules types)

*RedisModule_DigestAddStringBuffer

void RedisModule_DigestAddStringBuffer(RedisModuleDigest *md,
                                       unsigned char *ele,
                                       size_t len);

Add a new element to the digest. This function can be called multiple times one element after the other, for all the elements that constitute a given data structure. The function call must be followed by the call to RedisModule_DigestEndSequence eventually, when all the elements that are always in a given order are added. See the Redis Modules data types documentation for more info. However this is a quick example that uses Redis data types as an example.

To add a sequence of unordered elements (for example in the case of a Redis Set), the pattern to use is:

foreach element {
    AddElement(element);
    EndSequence();
}

Because Sets are not ordered, so every element added has a position that does not depend from the other. However if instead our elements are ordered in pairs, like field-value pairs of an Hash, then one should use:

foreach key,value {
    AddElement(key);
    AddElement(value);
    EndSquence();
}

Because the key and value will be always in the above order, while instead the single key-value pairs, can appear in any position into a Redis hash.

A list of ordered elements would be implemented with:

foreach element {
    AddElement(element);
}
EndSequence();

*RedisModule_DigestAddLongLong

void RedisModule_DigestAddLongLong(RedisModuleDigest *md, long long ll);

Like RedisModule_DigestAddStringBuffer() but takes a long long as input that gets converted into a string before adding it to the digest.

*RedisModule_DigestEndSequence

void RedisModule_DigestEndSequence(RedisModuleDigest *md);

See the documentation for RedisModule_DigestAddElement().

*RedisModule_LoadDataTypeFromString

void *RedisModule_LoadDataTypeFromString(const RedisModuleString *str,
                                         const moduleType *mt);

Decode a serialized representation of a module data type 'mt' from string 'str' and return a newly allocated value, or NULL if decoding failed.

This call basically reuses the 'rdb_load' callback which module data types implement in order to allow a module to arbitrarily serialize/de-serialize keys, similar to how the Redis 'DUMP' and 'RESTORE' commands are implemented.

Modules should generally use the REDISMODULE_OPTIONS_HANDLE_IO_ERRORS flag and make sure the de-serialization code properly checks and handles IO errors (freeing allocated buffers and returning a NULL).

If this is NOT done, Redis will handle corrupted (or just truncated) serialized data by producing an error message and terminating the process.

*RedisModule_SaveDataTypeToString

RedisModuleString *RedisModule_SaveDataTypeToString(RedisModuleCtx *ctx,
                                                    void *data,
                                                    const moduleType *mt);

Encode a module data type 'mt' value 'data' into serialized form, and return it as a newly allocated RedisModuleString.

This call basically reuses the 'rdb_save' callback which module data types implement in order to allow a module to arbitrarily serialize/de-serialize keys, similar to how the Redis 'DUMP' and 'RESTORE' commands are implemented.

*AOF API for modules data types

*RedisModule_EmitAOF

void RedisModule_EmitAOF(RedisModuleIO *io,
                         const char *cmdname,
                         const char *fmt,
                         ...);

Emits a command into the AOF during the AOF rewriting process. This function is only called in the context of the aof_rewrite method of data types exported by a module. The command works exactly like RedisModule_Call() in the way the parameters are passed, but it does not return anything as the error handling is performed by Redis itself.

*IO context handling

*RedisModule_GetKeyNameFromIO

const RedisModuleString *RedisModule_GetKeyNameFromIO(RedisModuleIO *io);

Returns a RedisModuleString with the name of the key currently saving or loading, when an IO data type callback is called. There is no guarantee that the key name is always available, so this may return NULL.

*RedisModule_GetKeyNameFromModuleKey

const RedisModuleString *RedisModule_GetKeyNameFromModuleKey(RedisModuleKey *key);

Returns a RedisModuleString with the name of the key from RedisModuleKey.

*Logging

*RedisModule_Log

void RedisModule_Log(RedisModuleCtx *ctx,
                     const char *levelstr,
                     const char *fmt,
                     ...);

Produces a log message to the standard Redis log, the format accepts printf-alike specifiers, while level is a string describing the log level to use when emitting the log, and must be one of the following:

  • "debug" (REDISMODULE_LOGLEVEL_DEBUG)
  • "verbose" (REDISMODULE_LOGLEVEL_VERBOSE)
  • "notice" (REDISMODULE_LOGLEVEL_NOTICE)
  • "warning" (REDISMODULE_LOGLEVEL_WARNING)

If the specified log level is invalid, verbose is used by default. There is a fixed limit to the length of the log line this function is able to emit, this limit is not specified but is guaranteed to be more than a few lines of text.

The ctx argument may be NULL if cannot be provided in the context of the caller for instance threads or callbacks, in which case a generic "module" will be used instead of the module name.

*RedisModule_LogIOError

void RedisModule_LogIOError(RedisModuleIO *io,
                            const char *levelstr,
                            const char *fmt,
                            ...);

Log errors from RDB / AOF serialization callbacks.

This function should be used when a callback is returning a critical error to the caller since cannot load or save the data for some critical reason.

*RedisModule__Assert

void RedisModule__Assert(const char *estr, const char *file, int line);

Redis-like assert function.

The macro RedisModule_Assert(expression) is recommended, rather than calling this function directly.

A failed assertion will shut down the server and produce logging information that looks identical to information generated by Redis itself.

*RedisModule_LatencyAddSample

void RedisModule_LatencyAddSample(const char *event, mstime_t latency);

Allows adding event to the latency monitor to be observed by the LATENCY command. The call is skipped if the latency is smaller than the configured latency-monitor-threshold.

*Blocking clients from modules

For a guide about blocking commands in modules, see https://redis.io/topics/modules-blocking-ops.

*RedisModule_BlockClient

RedisModuleBlockedClient *RedisModule_BlockClient(RedisModuleCtx *ctx,
                                                  RedisModuleCmdFunc reply_callback,
                                                  RedisModuleCmdFunc timeout_callback,
                                                  void (*free_privdata)(RedisModuleCtx*, void*),
                                                  long long timeout_ms);

Block a client in the context of a blocking command, returning an handle which will be used, later, in order to unblock the client with a call to RedisModule_UnblockClient(). The arguments specify callback functions and a timeout after which the client is unblocked.

The callbacks are called in the following contexts:

reply_callback:   called after a successful RedisModule_UnblockClient()
                  call in order to reply to the client and unblock it.

timeout_callback: called when the timeout is reached in order to send an
                  error to the client.

free_privdata:    called in order to free the private data that is passed
                  by RedisModule_UnblockClient() call.

Note: RedisModule_UnblockClient should be called for every blocked client, even if client was killed, timed-out or disconnected. Failing to do so will result in memory leaks.

There are some cases where RedisModule_BlockClient() cannot be used:

  1. If the client is a Lua script.
  2. If the client is executing a MULTI block.

In these cases, a call to RedisModule_BlockClient() will not block the client, but instead produce a specific error reply.

Measuring background time: By default the time spent in the blocked command is not account for the total command duration. To include such time you should use RedisModule_BlockedClientMeasureTimeStart() and RedisModule_BlockedClientMeasureTimeEnd() one, or multiple times within the blocking command background work.

*RedisModule_BlockClientOnKeys

RedisModuleBlockedClient *RedisModule_BlockClientOnKeys(RedisModuleCtx *ctx,
                                                        RedisModuleCmdFunc reply_callback,
                                                        RedisModuleCmdFunc timeout_callback,
                                                        void (*free_privdata)(RedisModuleCtx*, void*),
                                                        long long timeout_ms,
                                                        RedisModuleString **keys,
                                                        int numkeys,
                                                        void *privdata);

This call is similar to RedisModule_BlockClient(), however in this case we don't just block the client, but also ask Redis to unblock it automatically once certain keys become "ready", that is, contain more data.

Basically this is similar to what a typical Redis command usually does, like BLPOP or BZPOPMAX: the client blocks if it cannot be served ASAP, and later when the key receives new data (a list push for instance), the client is unblocked and served.

However in the case of this module API, when the client is unblocked?

  1. If you block on a key of a type that has blocking operations associated, like a list, a sorted set, a stream, and so forth, the client may be unblocked once the relevant key is targeted by an operation that normally unblocks the native blocking operations for that type. So if we block on a list key, an RPUSH command may unblock our client and so forth.
  2. If you are implementing your native data type, or if you want to add new unblocking conditions in addition to "1", you can call the modules API RedisModule_SignalKeyAsReady().

Anyway we can't be sure if the client should be unblocked just because the key is signaled as ready: for instance a successive operation may change the key, or a client in queue before this one can be served, modifying the key as well and making it empty again. So when a client is blocked with RedisModule_BlockClientOnKeys() the reply callback is not called after RedisModule_UnblockClient() is called, but every time a key is signaled as ready: if the reply callback can serve the client, it returns REDISMODULE_OK and the client is unblocked, otherwise it will return REDISMODULE_ERR and we'll try again later.

The reply callback can access the key that was signaled as ready by calling the API RedisModule_GetBlockedClientReadyKey(), that returns just the string name of the key as a RedisModuleString object.

Thanks to this system we can setup complex blocking scenarios, like unblocking a client only if a list contains at least 5 items or other more fancy logics.

Note that another difference with RedisModule_BlockClient(), is that here we pass the private data directly when blocking the client: it will be accessible later in the reply callback. Normally when blocking with RedisModule_BlockClient() the private data to reply to the client is passed when calling RedisModule_UnblockClient() but here the unblocking is performed by Redis itself, so we need to have some private data before hand. The private data is used to store any information about the specific unblocking operation that you are implementing. Such information will be freed using the free_privdata callback provided by the user.

However the reply callback will be able to access the argument vector of the command, so the private data is often not needed.

Note: Under normal circumstances RedisModule_UnblockClient should not be called for clients that are blocked on keys (Either the key will become ready or a timeout will occur). If for some reason you do want to call RedisModule_UnblockClient it is possible: Client will be handled as if it were timed-out (You must implement the timeout callback in that case).

*RedisModule_SignalKeyAsReady

void RedisModule_SignalKeyAsReady(RedisModuleCtx *ctx, RedisModuleString *key);

This function is used in order to potentially unblock a client blocked on keys with RedisModule_BlockClientOnKeys(). When this function is called, all the clients blocked for this key will get their reply_callback called.

Note: The function has no effect if the signaled key doesn't exist.

*RedisModule_UnblockClient

int RedisModule_UnblockClient(RedisModuleBlockedClient *bc, void *privdata);

Unblock a client blocked by RedisModule_BlockedClient. This will trigger the reply callbacks to be called in order to reply to the client. The 'privdata' argument will be accessible by the reply callback, so the caller of this function can pass any value that is needed in order to actually reply to the client.

A common usage for 'privdata' is a thread that computes something that needs to be passed to the client, included but not limited some slow to compute reply or some reply obtained via networking.

Note 1: this function can be called from threads spawned by the module.

Note 2: when we unblock a client that is blocked for keys using the API RedisModule_BlockClientOnKeys(), the privdata argument here is not used. Unblocking a client that was blocked for keys using this API will still require the client to get some reply, so the function will use the "timeout" handler in order to do so (The privdata provided in RedisModule_BlockClientOnKeys() is accessible from the timeout callback via RedisModule_GetBlockedClientPrivateData).

*RedisModule_AbortBlock

int RedisModule_AbortBlock(RedisModuleBlockedClient *bc);

Abort a blocked client blocking operation: the client will be unblocked without firing any callback.

*RedisModule_SetDisconnectCallback

void RedisModule_SetDisconnectCallback(RedisModuleBlockedClient *bc,
                                       RedisModuleDisconnectFunc callback);

Set a callback that will be called if a blocked client disconnects before the module has a chance to call RedisModule_UnblockClient()

Usually what you want to do there, is to cleanup your module state so that you can call RedisModule_UnblockClient() safely, otherwise the client will remain blocked forever if the timeout is large.

Notes:

  1. It is not safe to call Reply* family functions here, it is also useless since the client is gone.

  2. This callback is not called if the client disconnects because of a timeout. In such a case, the client is unblocked automatically and the timeout callback is called.

*RedisModule_IsBlockedReplyRequest

int RedisModule_IsBlockedReplyRequest(RedisModuleCtx *ctx);

Return non-zero if a module command was called in order to fill the reply for a blocked client.

*RedisModule_IsBlockedTimeoutRequest

int RedisModule_IsBlockedTimeoutRequest(RedisModuleCtx *ctx);

Return non-zero if a module command was called in order to fill the reply for a blocked client that timed out.

*RedisModule_GetBlockedClientPrivateData

void *RedisModule_GetBlockedClientPrivateData(RedisModuleCtx *ctx);

Get the private data set by RedisModule_UnblockClient()

*RedisModule_GetBlockedClientReadyKey

RedisModuleString *RedisModule_GetBlockedClientReadyKey(RedisModuleCtx *ctx);

Get the key that is ready when the reply callback is called in the context of a client blocked by RedisModule_BlockClientOnKeys().

*RedisModule_GetBlockedClientHandle

RedisModuleBlockedClient *RedisModule_GetBlockedClientHandle(RedisModuleCtx *ctx);

Get the blocked client associated with a given context. This is useful in the reply and timeout callbacks of blocked clients, before sometimes the module has the blocked client handle references around, and wants to cleanup it.

*RedisModule_BlockedClientDisconnected

int RedisModule_BlockedClientDisconnected(RedisModuleCtx *ctx);

Return true if when the free callback of a blocked client is called, the reason for the client to be unblocked is that it disconnected while it was blocked.

*Thread Safe Contexts

*RedisModule_GetThreadSafeContext

RedisModuleCtx *RedisModule_GetThreadSafeContext(RedisModuleBlockedClient *bc);

Return a context which can be used inside threads to make Redis context calls with certain modules APIs. If 'bc' is not NULL then the module will be bound to a blocked client, and it will be possible to use the RedisModule_Reply* family of functions to accumulate a reply for when the client will be unblocked. Otherwise the thread safe context will be detached by a specific client.

To call non-reply APIs, the thread safe context must be prepared with:

RedisModule_ThreadSafeContextLock(ctx);
... make your call here ...
RedisModule_ThreadSafeContextUnlock(ctx);

This is not needed when using RedisModule_Reply* functions, assuming that a blocked client was used when the context was created, otherwise no RedisModule_Reply* call should be made at all.

NOTE: If you're creating a detached thread safe context (bc is NULL), consider using RM_GetDetachedThreadSafeContext which will also retain the module ID and thus be more useful for logging.

*RedisModule_GetDetachedThreadSafeContext

RedisModuleCtx *RedisModule_GetDetachedThreadSafeContext(RedisModuleCtx *ctx);

Return a detached thread safe context that is not associated with any specific blocked client, but is associated with the module's context.

This is useful for modules that wish to hold a global context over a long term, for purposes such as logging.

*RedisModule_FreeThreadSafeContext

void RedisModule_FreeThreadSafeContext(RedisModuleCtx *ctx);

Release a thread safe context.

*RedisModule_ThreadSafeContextLock

void RedisModule_ThreadSafeContextLock(RedisModuleCtx *ctx);

Acquire the server lock before executing a thread safe API call. This is not needed for RedisModule_Reply* calls when there is a blocked client connected to the thread safe context.

*RedisModule_ThreadSafeContextTryLock

int RedisModule_ThreadSafeContextTryLock(RedisModuleCtx *ctx);

Similar to RedisModule_ThreadSafeContextLock but this function would not block if the server lock is already acquired.

If successful (lock acquired) REDISMODULE_OK is returned, otherwise REDISMODULE_ERR is returned and errno is set accordingly.

*RedisModule_ThreadSafeContextUnlock

void RedisModule_ThreadSafeContextUnlock(RedisModuleCtx *ctx);

Release the server lock after a thread safe API call was executed.

*Module Keyspace Notifications API

*RedisModule_SubscribeToKeyspaceEvents

int RedisModule_SubscribeToKeyspaceEvents(RedisModuleCtx *ctx,
                                          int types,
                                          RedisModuleNotificationFunc callback);

Subscribe to keyspace notifications. This is a low-level version of the keyspace-notifications API. A module can register callbacks to be notified when keyspace events occur.

Notification events are filtered by their type (string events, set events, etc), and the subscriber callback receives only events that match a specific mask of event types.

When subscribing to notifications with RedisModule_SubscribeToKeyspaceEvents the module must provide an event type-mask, denoting the events the subscriber is interested in. This can be an ORed mask of any of the following flags:

  • REDISMODULE_NOTIFY_GENERIC: Generic commands like DEL, EXPIRE, RENAME
  • REDISMODULE_NOTIFY_STRING: String events
  • REDISMODULE_NOTIFY_LIST: List events
  • REDISMODULE_NOTIFY_SET: Set events
  • REDISMODULE_NOTIFY_HASH: Hash events
  • REDISMODULE_NOTIFY_ZSET: Sorted Set events
  • REDISMODULE_NOTIFY_EXPIRED: Expiration events
  • REDISMODULE_NOTIFY_EVICTED: Eviction events
  • REDISMODULE_NOTIFY_STREAM: Stream events
  • REDISMODULE_NOTIFY_MODULE: Module types events
  • REDISMODULE_NOTIFY_KEYMISS: Key-miss events
  • REDISMODULE_NOTIFY_ALL: All events (Excluding REDISMODULE_NOTIFY_KEYMISS)
  • REDISMODULE_NOTIFY_LOADED: A special notification available only for modules, indicates that the key was loaded from persistence. Notice, when this event fires, the given key can not be retained, use RM_CreateStringFromString instead.

We do not distinguish between key events and keyspace events, and it is up to the module to filter the actions taken based on the key.

The subscriber signature is:

int (*RedisModuleNotificationFunc) (RedisModuleCtx *ctx, int type,
                                    const char *event,
                                    RedisModuleString *key);

type is the event type bit, that must match the mask given at registration time. The event string is the actual command being executed, and key is the relevant Redis key.

Notification callback gets executed with a redis context that can not be used to send anything to the client, and has the db number where the event occurred as its selected db number.

Notice that it is not necessary to enable notifications in redis.conf for module notifications to work.

Warning: the notification callbacks are performed in a synchronous manner, so notification callbacks must to be fast, or they would slow Redis down. If you need to take long actions, use threads to offload them.

See https://redis.io/topics/notifications for more information.

*RedisModule_GetNotifyKeyspaceEvents

int RedisModule_GetNotifyKeyspaceEvents();

Get the configured bitmap of notify-keyspace-events (Could be used for additional filtering in RedisModuleNotificationFunc)

*RedisModule_NotifyKeyspaceEvent

int RedisModule_NotifyKeyspaceEvent(RedisModuleCtx *ctx,
                                    int type,
                                    const char *event,
                                    RedisModuleString *key);

Expose notifyKeyspaceEvent to modules

*Modules Cluster API

*RedisModule_RegisterClusterMessageReceiver

void RedisModule_RegisterClusterMessageReceiver(RedisModuleCtx *ctx,
                                                uint8_t type,
                                                RedisModuleClusterMessageReceiver callback);

Register a callback receiver for cluster messages of type 'type'. If there was already a registered callback, this will replace the callback function with the one provided, otherwise if the callback is set to NULL and there is already a callback for this function, the callback is unregistered (so this API call is also used in order to delete the receiver).

*RedisModule_SendClusterMessage

int RedisModule_SendClusterMessage(RedisModuleCtx *ctx,
                                   char *target_id,
                                   uint8_t type,
                                   unsigned char *msg,
                                   uint32_t len);

Send a message to all the nodes in the cluster if target is NULL, otherwise at the specified target, which is a REDISMODULE_NODE_ID_LEN bytes node ID, as returned by the receiver callback or by the nodes iteration functions.

The function returns REDISMODULE_OK if the message was successfully sent, otherwise if the node is not connected or such node ID does not map to any known cluster node, REDISMODULE_ERR is returned.

*RedisModule_GetClusterNodesList

char **RedisModule_GetClusterNodesList(RedisModuleCtx *ctx, size_t *numnodes);

Return an array of string pointers, each string pointer points to a cluster node ID of exactly REDISMODULE_NODE_ID_SIZE bytes (without any null term). The number of returned node IDs is stored into *numnodes. However if this function is called by a module not running an a Redis instance with Redis Cluster enabled, NULL is returned instead.

The IDs returned can be used with RedisModule_GetClusterNodeInfo() in order to get more information about single nodes.

The array returned by this function must be freed using the function RedisModule_FreeClusterNodesList().

Example:

size_t count, j;
char **ids = RedisModule_GetClusterNodesList(ctx,&count);
for (j = 0; j < count; j++) {
    RedisModule_Log("notice","Node %.*s",
        REDISMODULE_NODE_ID_LEN,ids[j]);
}
RedisModule_FreeClusterNodesList(ids);

*RedisModule_FreeClusterNodesList

void RedisModule_FreeClusterNodesList(char **ids);

Free the node list obtained with RedisModule_GetClusterNodesList.

*RedisModule_GetMyClusterID

const char *RedisModule_GetMyClusterID(void);

Return this node ID (REDISMODULE_CLUSTER_ID_LEN bytes) or NULL if the cluster is disabled.

*RedisModule_GetClusterSize

size_t RedisModule_GetClusterSize(void);

Return the number of nodes in the cluster, regardless of their state (handshake, noaddress, ...) so that the number of active nodes may actually be smaller, but not greater than this number. If the instance is not in cluster mode, zero is returned.

*RedisModule_GetClusterNodeInfo

int RedisModule_GetClusterNodeInfo(RedisModuleCtx *ctx,
                                   const char *id,
                                   char *ip,
                                   char *master_id,
                                   int *port,
                                   int *flags);

Populate the specified info for the node having as ID the specified 'id', then returns REDISMODULE_OK. Otherwise if the node ID does not exist from the POV of this local node, REDISMODULE_ERR is returned.

The arguments ip, master_id, port and flags can be NULL in case we don't need to populate back certain info. If an ip and master_id (only populated if the instance is a slave) are specified, they point to buffers holding at least REDISMODULE_NODE_ID_LEN bytes. The strings written back as ip and master_id are not null terminated.

The list of flags reported is the following:

  • REDISMODULE_NODE_MYSELF: This node
  • REDISMODULE_NODE_MASTER: The node is a master
  • REDISMODULE_NODE_SLAVE: The node is a replica
  • REDISMODULE_NODE_PFAIL: We see the node as failing
  • REDISMODULE_NODE_FAIL: The cluster agrees the node is failing
  • REDISMODULE_NODE_NOFAILOVER: The slave is configured to never failover

*RedisModule_SetClusterFlags

void RedisModule_SetClusterFlags(RedisModuleCtx *ctx, uint64_t flags);

Set Redis Cluster flags in order to change the normal behavior of Redis Cluster, especially with the goal of disabling certain functions. This is useful for modules that use the Cluster API in order to create a different distributed system, but still want to use the Redis Cluster message bus. Flags that can be set:

  • CLUSTER_MODULE_FLAG_NO_FAILOVER
  • CLUSTER_MODULE_FLAG_NO_REDIRECTION

With the following effects:

  • NO_FAILOVER: prevent Redis Cluster slaves to failover a failing master. Also disables the replica migration feature.

  • NO_REDIRECTION: Every node will accept any key, without trying to perform partitioning according to the user Redis Cluster algorithm. Slots informations will still be propagated across the cluster, but without effects.

*Modules Timers API

Module timers are an high precision "green timers" abstraction where every module can register even millions of timers without problems, even if the actual event loop will just have a single timer that is used to awake the module timers subsystem in order to process the next event.

All the timers are stored into a radix tree, ordered by expire time, when the main Redis event loop timer callback is called, we try to process all the timers already expired one after the other. Then we re-enter the event loop registering a timer that will expire when the next to process module timer will expire.

Every time the list of active timers drops to zero, we unregister the main event loop timer, so that there is no overhead when such feature is not used.

*RedisModule_CreateTimer

RedisModuleTimerID RedisModule_CreateTimer(RedisModuleCtx *ctx,
                                           mstime_t period,
                                           RedisModuleTimerProc callback,
                                           void *data);

Create a new timer that will fire after period milliseconds, and will call the specified function using data as argument. The returned timer ID can be used to get information from the timer or to stop it before it fires. Note that for the common use case of a repeating timer (Re-registration of the timer inside the RedisModuleTimerProc callback) it matters when this API is called: If it is called at the beginning of 'callback' it means the event will triggered every 'period'. If it is called at the end of 'callback' it means there will 'period' milliseconds gaps between events. (If the time it takes to execute 'callback' is negligible the two statements above mean the same)

*RedisModule_StopTimer

int RedisModule_StopTimer(RedisModuleCtx *ctx,
                          RedisModuleTimerID id,
                          void **data);

Stop a timer, returns REDISMODULE_OK if the timer was found, belonged to the calling module, and was stopped, otherwise REDISMODULE_ERR is returned. If not NULL, the data pointer is set to the value of the data argument when the timer was created.

*RedisModule_GetTimerInfo

int RedisModule_GetTimerInfo(RedisModuleCtx *ctx,
                             RedisModuleTimerID id,
                             uint64_t *remaining,
                             void **data);

Obtain information about a timer: its remaining time before firing (in milliseconds), and the private data pointer associated with the timer. If the timer specified does not exist or belongs to a different module no information is returned and the function returns REDISMODULE_ERR, otherwise REDISMODULE_OK is returned. The arguments remaining or data can be NULL if the caller does not need certain information.

*Modules ACL API

Implements a hook into the authentication and authorization within Redis.

*RedisModule_CreateModuleUser

RedisModuleUser *RedisModule_CreateModuleUser(const char *name);

Creates a Redis ACL user that the module can use to authenticate a client. After obtaining the user, the module should set what such user can do using the RedisModule_SetUserACL() function. Once configured, the user can be used in order to authenticate a connection, with the specified ACL rules, using the RedisModule_AuthClientWithUser() function.

Note that:

  • Users created here are not listed by the ACL command.
  • Users created here are not checked for duplicated name, so it's up to the module calling this function to take care of not creating users with the same name.
  • The created user can be used to authenticate multiple Redis connections.

The caller can later free the user using the function RedisModule_FreeModuleUser(). When this function is called, if there are still clients authenticated with this user, they are disconnected. The function to free the user should only be used when the caller really wants to invalidate the user to define a new one with different capabilities.

*RedisModule_FreeModuleUser

int RedisModule_FreeModuleUser(RedisModuleUser *user);

Frees a given user and disconnects all of the clients that have been authenticated with it. See RedisModule_CreateModuleUser for detailed usage.

*RedisModule_SetModuleUserACL

int RedisModule_SetModuleUserACL(RedisModuleUser *user, const char* acl);

Sets the permissions of a user created through the redis module interface. The syntax is the same as ACL SETUSER, so refer to the documentation in acl.c for more information. See RedisModule_CreateModuleUser for detailed usage.

Returns REDISMODULE_OK on success and REDISMODULE_ERR on failure and will set an errno describing why the operation failed.

*RedisModule_AuthenticateClientWithUser

int RedisModule_AuthenticateClientWithUser(RedisModuleCtx *ctx,
                                           RedisModuleUser *module_user,
                                           RedisModuleUserChangedFunc callback,
                                           void *privdata,
                                           uint64_t *client_id);

Authenticate the current context's user with the provided redis acl user. Returns REDISMODULE_ERR if the user is disabled.

See authenticateClientWithUser for information about callback, client_id, and general usage for authentication.

*RedisModule_AuthenticateClientWithACLUser

int RedisModule_AuthenticateClientWithACLUser(RedisModuleCtx *ctx,
                                              const char *name,
                                              size_t len,
                                              RedisModuleUserChangedFunc callback,
                                              void *privdata,
                                              uint64_t *client_id);

Authenticate the current context's user with the provided redis acl user. Returns REDISMODULE_ERR if the user is disabled or the user does not exist.

See authenticateClientWithUser for information about callback, client_id, and general usage for authentication.

*RedisModule_DeauthenticateAndCloseClient

int RedisModule_DeauthenticateAndCloseClient(RedisModuleCtx *ctx,
                                             uint64_t client_id);

Deauthenticate and close the client. The client resources will not be be immediately freed, but will be cleaned up in a background job. This is the recommended way to deauthenicate a client since most clients can't handle users becoming deauthenticated. Returns REDISMODULE_ERR when the client doesn't exist and REDISMODULE_OK when the operation was successful.

The client ID is returned from the RedisModule_AuthenticateClientWithUser and RedisModule_AuthenticateClientWithACLUser APIs, but can be obtained through the CLIENT api or through server events.

This function is not thread safe, and must be executed within the context of a command or thread safe context.

*RedisModule_GetClientCertificate

RedisModuleString *RedisModule_GetClientCertificate(RedisModuleCtx *ctx,
                                                    uint64_t client_id);

Return the X.509 client-side certificate used by the client to authenticate this connection.

The return value is an allocated RedisModuleString that is a X.509 certificate encoded in PEM (Base64) format. It should be freed (or auto-freed) by the caller.

A NULL value is returned in the following conditions:

  • Connection ID does not exist
  • Connection is not a TLS connection
  • Connection is a TLS connection but no client ceritifcate was used

*Modules Dictionary API

Implements a sorted dictionary (actually backed by a radix tree) with the usual get / set / del / num-items API, together with an iterator capable of going back and forth.

*RedisModule_CreateDict

RedisModuleDict *RedisModule_CreateDict(RedisModuleCtx *ctx);

Create a new dictionary. The 'ctx' pointer can be the current module context or NULL, depending on what you want. Please follow the following rules:

  1. Use a NULL context if you plan to retain a reference to this dictionary that will survive the time of the module callback where you created it.
  2. Use a NULL context if no context is available at the time you are creating the dictionary (of course...).
  3. However use the current callback context as 'ctx' argument if the dictionary time to live is just limited to the callback scope. In this case, if enabled, you can enjoy the automatic memory management that will reclaim the dictionary memory, as well as the strings returned by the Next / Prev dictionary iterator calls.

*RedisModule_FreeDict

void RedisModule_FreeDict(RedisModuleCtx *ctx, RedisModuleDict *d);

Free a dictionary created with RedisModule_CreateDict(). You need to pass the context pointer 'ctx' only if the dictionary was created using the context instead of passing NULL.

*RedisModule_DictSize

uint64_t RedisModule_DictSize(RedisModuleDict *d);

Return the size of the dictionary (number of keys).

*RedisModule_DictSetC

int RedisModule_DictSetC(RedisModuleDict *d,
                         void *key,
                         size_t keylen,
                         void *ptr);

Store the specified key into the dictionary, setting its value to the pointer 'ptr'. If the key was added with success, since it did not already exist, REDISMODULE_OK is returned. Otherwise if the key already exists the function returns REDISMODULE_ERR.

*RedisModule_DictReplaceC

int RedisModule_DictReplaceC(RedisModuleDict *d,
                             void *key,
                             size_t keylen,
                             void *ptr);

Like RedisModule_DictSetC() but will replace the key with the new value if the key already exists.

*RedisModule_DictSet

int RedisModule_DictSet(RedisModuleDict *d, RedisModuleString *key, void *ptr);

Like RedisModule_DictSetC() but takes the key as a RedisModuleString.

*RedisModule_DictReplace

int RedisModule_DictReplace(RedisModuleDict *d,
                            RedisModuleString *key,
                            void *ptr);

Like RedisModule_DictReplaceC() but takes the key as a RedisModuleString.

*RedisModule_DictGetC

void *RedisModule_DictGetC(RedisModuleDict *d,
                           void *key,
                           size_t keylen,
                           int *nokey);

Return the value stored at the specified key. The function returns NULL both in the case the key does not exist, or if you actually stored NULL at key. So, optionally, if the 'nokey' pointer is not NULL, it will be set by reference to 1 if the key does not exist, or to 0 if the key exists.

*RedisModule_DictGet

void *RedisModule_DictGet(RedisModuleDict *d,
                          RedisModuleString *key,
                          int *nokey);

Like RedisModule_DictGetC() but takes the key as a RedisModuleString.

*RedisModule_DictDelC

int RedisModule_DictDelC(RedisModuleDict *d,
                         void *key,
                         size_t keylen,
                         void *oldval);

Remove the specified key from the dictionary, returning REDISMODULE_OK if the key was found and delted, or REDISMODULE_ERR if instead there was no such key in the dictionary. When the operation is successful, if 'oldval' is not NULL, then '*oldval' is set to the value stored at the key before it was deleted. Using this feature it is possible to get a pointer to the value (for instance in order to release it), without having to call RedisModule_DictGet() before deleting the key.

*RedisModule_DictDel

int RedisModule_DictDel(RedisModuleDict *d,
                        RedisModuleString *key,
                        void *oldval);

Like RedisModule_DictDelC() but gets the key as a RedisModuleString.

*RedisModule_DictIteratorStartC

RedisModuleDictIter *RedisModule_DictIteratorStartC(RedisModuleDict *d,
                                                    const char *op,
                                                    void *key,
                                                    size_t keylen);

Return an iterator, setup in order to start iterating from the specified key by applying the operator 'op', which is just a string specifying the comparison operator to use in order to seek the first element. The operators available are:

  • ^ – Seek the first (lexicographically smaller) key.
  • $ – Seek the last (lexicographically biffer) key.
  • > – Seek the first element greater than the specified key.
  • >= – Seek the first element greater or equal than the specified key.
  • < – Seek the first element smaller than the specified key.
  • <= – Seek the first element smaller or equal than the specified key.
  • == – Seek the first element matching exactly the specified key.

Note that for ^ and $ the passed key is not used, and the user may just pass NULL with a length of 0.

If the element to start the iteration cannot be seeked based on the key and operator passed, RedisModule_DictNext() / Prev() will just return REDISMODULE_ERR at the first call, otherwise they'll produce elements.

*RedisModule_DictIteratorStart

RedisModuleDictIter *RedisModule_DictIteratorStart(RedisModuleDict *d,
                                                   const char *op,
                                                   RedisModuleString *key);

Exactly like RedisModule_DictIteratorStartC, but the key is passed as a RedisModuleString.

*RedisModule_DictIteratorStop

void RedisModule_DictIteratorStop(RedisModuleDictIter *di);

Release the iterator created with RedisModule_DictIteratorStart(). This call is mandatory otherwise a memory leak is introduced in the module.

*RedisModule_DictIteratorReseekC

int RedisModule_DictIteratorReseekC(RedisModuleDictIter *di,
                                    const char *op,
                                    void *key,
                                    size_t keylen);

After its creation with RedisModule_DictIteratorStart(), it is possible to change the currently selected element of the iterator by using this API call. The result based on the operator and key is exactly like the function RedisModule_DictIteratorStart(), however in this case the return value is just REDISMODULE_OK in case the seeked element was found, or REDISMODULE_ERR in case it was not possible to seek the specified element. It is possible to reseek an iterator as many times as you want.

*RedisModule_DictIteratorReseek

int RedisModule_DictIteratorReseek(RedisModuleDictIter *di,
                                   const char *op,
                                   RedisModuleString *key);

Like RedisModule_DictIteratorReseekC() but takes the key as as a RedisModuleString.

*RedisModule_DictNextC

void *RedisModule_DictNextC(RedisModuleDictIter *di,
                            size_t *keylen,
                            void **dataptr);

Return the current item of the dictionary iterator di and steps to the next element. If the iterator already yield the last element and there are no other elements to return, NULL is returned, otherwise a pointer to a string representing the key is provided, and the *keylen length is set by reference (if keylen is not NULL). The *dataptr, if not NULL is set to the value of the pointer stored at the returned key as auxiliary data (as set by the RedisModule_DictSet API).

Usage example:

 ... create the iterator here ...
 char *key;
 void *data;
 while((key = RedisModule_DictNextC(iter,&keylen,&data)) != NULL) {
     printf("%.*s %p\n", (int)keylen, key, data);
 }

The returned pointer is of type void because sometimes it makes sense to cast it to a char* sometimes to an unsigned char* depending on the fact it contains or not binary data, so this API ends being more comfortable to use.

The validity of the returned pointer is until the next call to the next/prev iterator step. Also the pointer is no longer valid once the iterator is released.

*RedisModule_DictPrevC

void *RedisModule_DictPrevC(RedisModuleDictIter *di,
                            size_t *keylen,
                            void **dataptr);

This function is exactly like RedisModule_DictNext() but after returning the currently selected element in the iterator, it selects the previous element (laxicographically smaller) instead of the next one.

*RedisModule_DictNext

RedisModuleString *RedisModule_DictNext(RedisModuleCtx *ctx,
                                        RedisModuleDictIter *di,
                                        void **dataptr);

Like RedisModuleNextC(), but instead of returning an internally allocated buffer and key length, it returns directly a module string object allocated in the specified context 'ctx' (that may be NULL exactly like for the main API RedisModule_CreateString).

The returned string object should be deallocated after use, either manually or by using a context that has automatic memory management active.

*RedisModule_DictPrev

RedisModuleString *RedisModule_DictPrev(RedisModuleCtx *ctx,
                                        RedisModuleDictIter *di,
                                        void **dataptr);

Like RedisModule_DictNext() but after returning the currently selected element in the iterator, it selects the previous element (laxicographically smaller) instead of the next one.

*RedisModule_DictCompareC

int RedisModule_DictCompareC(RedisModuleDictIter *di,
                             const char *op,
                             void *key,
                             size_t keylen);

Compare the element currently pointed by the iterator to the specified element given by key/keylen, according to the operator 'op' (the set of valid operators are the same valid for RedisModule_DictIteratorStart). If the comparision is successful the command returns REDISMODULE_OK otherwise REDISMODULE_ERR is returned.

This is useful when we want to just emit a lexicographical range, so in the loop, as we iterate elements, we can also check if we are still on range.

The function return REDISMODULE_ERR if the iterator reached the end of elements condition as well.

*RedisModule_DictCompare

int RedisModule_DictCompare(RedisModuleDictIter *di,
                            const char *op,
                            RedisModuleString *key);

Like RedisModule_DictCompareC but gets the key to compare with the current iterator key as a RedisModuleString.

*Modules Info fields

*RedisModule_InfoAddSection

int RedisModule_InfoAddSection(RedisModuleInfoCtx *ctx, char *name);

Used to start a new section, before adding any fields. the section name will be prefixed by <modulename>_ and must only include A-Z,a-z,0-9. NULL or empty string indicates the default section (only <modulename>) is used. When return value is REDISMODULE_ERR, the section should and will be skipped.

*RedisModule_InfoBeginDictField

int RedisModule_InfoBeginDictField(RedisModuleInfoCtx *ctx, char *name);

Starts a dict field, similar to the ones in INFO KEYSPACE. Use normal RedisModule_InfoAddField* functions to add the items to this field, and terminate with RedisModule_InfoEndDictField.

*RedisModule_InfoEndDictField

int RedisModule_InfoEndDictField(RedisModuleInfoCtx *ctx);

Ends a dict field, see RedisModule_InfoBeginDictField

*RedisModule_InfoAddFieldString

int RedisModule_InfoAddFieldString(RedisModuleInfoCtx *ctx,
                                   char *field,
                                   RedisModuleString *value);

Used by RedisModuleInfoFunc to add info fields. Each field will be automatically prefixed by <modulename>_. Field names or values must not include \r\n or :.

*RedisModule_InfoAddFieldCString

int RedisModule_InfoAddFieldCString(RedisModuleInfoCtx *ctx,
                                    char *field,
                                    char *value);

See RedisModule_InfoAddFieldString().

*RedisModule_InfoAddFieldDouble

int RedisModule_InfoAddFieldDouble(RedisModuleInfoCtx *ctx,
                                   char *field,
                                   double value);

See RedisModule_InfoAddFieldString().

*RedisModule_InfoAddFieldLongLong

int RedisModule_InfoAddFieldLongLong(RedisModuleInfoCtx *ctx,
                                     char *field,
                                     long long value);

See RedisModule_InfoAddFieldString().

*RedisModule_InfoAddFieldULongLong

int RedisModule_InfoAddFieldULongLong(RedisModuleInfoCtx *ctx,
                                      char *field,
                                      unsigned long long value);

See RedisModule_InfoAddFieldString().

*RedisModule_RegisterInfoFunc

int RedisModule_RegisterInfoFunc(RedisModuleCtx *ctx, RedisModuleInfoFunc cb);

Registers callback for the INFO command. The callback should add INFO fields by calling the RedisModule_InfoAddField*() functions.

*RedisModule_GetServerInfo

RedisModuleServerInfoData *RedisModule_GetServerInfo(RedisModuleCtx *ctx,
                                                     const char *section);

Get information about the server similar to the one that returns from the INFO command. This function takes an optional 'section' argument that may be NULL. The return value holds the output and can be used with RedisModule_ServerInfoGetField and alike to get the individual fields. When done, it needs to be freed with RedisModule_FreeServerInfo or with the automatic memory management mechanism if enabled.

*RedisModule_FreeServerInfo

void RedisModule_FreeServerInfo(RedisModuleCtx *ctx,
                                RedisModuleServerInfoData *data);

Free data created with RedisModule_GetServerInfo(). You need to pass the context pointer 'ctx' only if the dictionary was created using the context instead of passing NULL.

*RedisModule_ServerInfoGetField

RedisModuleString *RedisModule_ServerInfoGetField(RedisModuleCtx *ctx,
                                                  RedisModuleServerInfoData *data,
                                                  const char* field);

Get the value of a field from data collected with RedisModule_GetServerInfo(). You need to pass the context pointer 'ctx' only if you want to use auto memory mechanism to release the returned string. Return value will be NULL if the field was not found.

*RedisModule_ServerInfoGetFieldC

const char *RedisModule_ServerInfoGetFieldC(RedisModuleServerInfoData *data,
                                            const char* field);

Similar to RedisModule_ServerInfoGetField, but returns a char* which should not be freed but the caller.

*RedisModule_ServerInfoGetFieldSigned

long long RedisModule_ServerInfoGetFieldSigned(RedisModuleServerInfoData *data,
                                               const char* field,
                                               int *out_err);

Get the value of a field from data collected with RedisModule_GetServerInfo(). If the field is not found, or is not numerical or out of range, return value will be 0, and the optional out_err argument will be set to REDISMODULE_ERR.

*RedisModule_ServerInfoGetFieldUnsigned

unsigned long long RedisModule_ServerInfoGetFieldUnsigned(RedisModuleServerInfoData *data,
                                                          const char* field,
                                                          int *out_err);

Get the value of a field from data collected with RedisModule_GetServerInfo(). If the field is not found, or is not numerical or out of range, return value will be 0, and the optional out_err argument will be set to REDISMODULE_ERR.

*RedisModule_ServerInfoGetFieldDouble

double RedisModule_ServerInfoGetFieldDouble(RedisModuleServerInfoData *data,
                                            const char* field,
                                            int *out_err);

Get the value of a field from data collected with RedisModule_GetServerInfo(). If the field is not found, or is not a double, return value will be 0, and the optional out_err argument will be set to REDISMODULE_ERR.

*Modules utility APIs

*RedisModule_GetRandomBytes

void RedisModule_GetRandomBytes(unsigned char *dst, size_t len);

Return random bytes using SHA1 in counter mode with a /dev/urandom initialized seed. This function is fast so can be used to generate many bytes without any effect on the operating system entropy pool. Currently this function is not thread safe.

*RedisModule_GetRandomHexChars

void RedisModule_GetRandomHexChars(char *dst, size_t len);

Like RedisModule_GetRandomBytes() but instead of setting the string to random bytes the string is set to random characters in the in the hex charset [0-9a-f].

*Modules API exporting / importing

*RedisModule_ExportSharedAPI

int RedisModule_ExportSharedAPI(RedisModuleCtx *ctx,
                                const char *apiname,
                                void *func);

This function is called by a module in order to export some API with a given name. Other modules will be able to use this API by calling the symmetrical function RedisModule_GetSharedAPI() and casting the return value to the right function pointer.

The function will return REDISMODULE_OK if the name is not already taken, otherwise REDISMODULE_ERR will be returned and no operation will be performed.

IMPORTANT: the apiname argument should be a string literal with static lifetime. The API relies on the fact that it will always be valid in the future.

*RedisModule_GetSharedAPI

void *RedisModule_GetSharedAPI(RedisModuleCtx *ctx, const char *apiname);

Request an exported API pointer. The return value is just a void pointer that the caller of this function will be required to cast to the right function pointer, so this is a private contract between modules.

If the requested API is not available then NULL is returned. Because modules can be loaded at different times with different order, this function calls should be put inside some module generic API registering step, that is called every time a module attempts to execute a command that requires external APIs: if some API cannot be resolved, the command should return an error.

Here is an example:

int ... myCommandImplementation() {
   if (getExternalAPIs() == 0) {
        reply with an error here if we cannot have the APIs
   }
   // Use the API:
   myFunctionPointer(foo);
}

And the function registerAPI() is:

int getExternalAPIs(void) {
    static int api_loaded = 0;
    if (api_loaded != 0) return 1; // APIs already resolved.

    myFunctionPointer = RedisModule_GetOtherModuleAPI("...");
    if (myFunctionPointer == NULL) return 0;

    return 1;
}

*Module Command Filter API

*RedisModule_UnregisterCommandFilter

int RedisModule_UnregisterCommandFilter(RedisModuleCtx *ctx,
                                        RedisModuleCommandFilter *filter);

Unregister a command filter.

*RedisModule_CommandFilterArgsCount

int RedisModule_CommandFilterArgsCount(RedisModuleCommandFilterCtx *fctx);

Return the number of arguments a filtered command has. The number of arguments include the command itself.

*RedisModule_CommandFilterArgGet

const RedisModuleString *RedisModule_CommandFilterArgGet(RedisModuleCommandFilterCtx *fctx,
                                                         int pos);

Return the specified command argument. The first argument (position 0) is the command itself, and the rest are user-provided args.

*RedisModule_CommandFilterArgInsert

int RedisModule_CommandFilterArgInsert(RedisModuleCommandFilterCtx *fctx,
                                       int pos,
                                       RedisModuleString *arg);

Modify the filtered command by inserting a new argument at the specified position. The specified RedisModuleString argument may be used by Redis after the filter context is destroyed, so it must not be auto-memory allocated, freed or used elsewhere.

*RedisModule_CommandFilterArgReplace

int RedisModule_CommandFilterArgReplace(RedisModuleCommandFilterCtx *fctx,
                                        int pos,
                                        RedisModuleString *arg);

Modify the filtered command by replacing an existing argument with a new one. The specified RedisModuleString argument may be used by Redis after the filter context is destroyed, so it must not be auto-memory allocated, freed or used elsewhere.

*RedisModule_CommandFilterArgDelete

int RedisModule_CommandFilterArgDelete(RedisModuleCommandFilterCtx *fctx,
                                       int pos);

Modify the filtered command by deleting an argument at the specified position.

*RedisModule_MallocSize

size_t RedisModule_MallocSize(void* ptr);

For a given pointer allocated via RedisModule_Alloc() or RedisModule_Realloc(), return the amount of memory allocated for it. Note that this may be different (larger) than the memory we allocated with the allocation calls, since sometimes the underlying allocator will allocate more memory.

*RedisModule_GetUsedMemoryRatio

float RedisModule_GetUsedMemoryRatio();

Return the a number between 0 to 1 indicating the amount of memory currently used, relative to the Redis "maxmemory" configuration.

  • 0 - No memory limit configured.
  • Between 0 and 1 - The percentage of the memory used normalized in 0-1 range.
  • Exactly 1 - Memory limit reached.
  • Greater 1 - More memory used than the configured limit.

*Scanning keyspace and hashes

*RedisModule_ScanCursorCreate

RedisModuleScanCursor *RedisModule_ScanCursorCreate();

Create a new cursor to be used with RedisModule_Scan

*RedisModule_ScanCursorRestart

void RedisModule_ScanCursorRestart(RedisModuleScanCursor *cursor);

Restart an existing cursor. The keys will be rescanned.

*RedisModule_ScanCursorDestroy

void RedisModule_ScanCursorDestroy(RedisModuleScanCursor *cursor);

Destroy the cursor struct.

*RedisModule_Scan

int RedisModule_Scan(RedisModuleCtx *ctx,
                     RedisModuleScanCursor *cursor,
                     RedisModuleScanCB fn,
                     void *privdata);

Scan API that allows a module to scan all the keys and value in the selected db.

Callback for scan implementation.

void scan_callback(RedisModuleCtx *ctx, RedisModuleString *keyname,
                   RedisModuleKey *key, void *privdata);
  • ctx: the redis module context provided to for the scan.
  • keyname: owned by the caller and need to be retained if used after this function.
  • key: holds info on the key and value, it is provided as best effort, in some cases it might be NULL, in which case the user should (can) use RedisModule_OpenKey() (and CloseKey too). when it is provided, it is owned by the caller and will be free when the callback returns.
  • privdata: the user data provided to RedisModule_Scan().

The way it should be used:

 RedisModuleCursor *c = RedisModule_ScanCursorCreate();
 while(RedisModule_Scan(ctx, c, callback, privateData));
 RedisModule_ScanCursorDestroy(c);

It is also possible to use this API from another thread while the lock is acquired during the actuall call to RedisModule_Scan:

 RedisModuleCursor *c = RedisModule_ScanCursorCreate();
 RedisModule_ThreadSafeContextLock(ctx);
 while(RedisModule_Scan(ctx, c, callback, privateData)){
     RedisModule_ThreadSafeContextUnlock(ctx);
     // do some background job
     RedisModule_ThreadSafeContextLock(ctx);
 }
 RedisModule_ScanCursorDestroy(c);

The function will return 1 if there are more elements to scan and 0 otherwise, possibly setting errno if the call failed.

It is also possible to restart an existing cursor using RedisModule_ScanCursorRestart.

IMPORTANT: This API is very similar to the Redis SCAN command from the point of view of the guarantees it provides. This means that the API may report duplicated keys, but guarantees to report at least one time every key that was there from the start to the end of the scanning process.

NOTE: If you do database changes within the callback, you should be aware that the internal state of the database may change. For instance it is safe to delete or modify the current key, but may not be safe to delete any other key. Moreover playing with the Redis keyspace while iterating may have the effect of returning more duplicates. A safe pattern is to store the keys names you want to modify elsewhere, and perform the actions on the keys later when the iteration is complete. However this can cost a lot of memory, so it may make sense to just operate on the current key when possible during the iteration, given that this is safe.

*RedisModule_ScanKey

int RedisModule_ScanKey(RedisModuleKey *key,
                        RedisModuleScanCursor *cursor,
                        RedisModuleScanKeyCB fn,
                        void *privdata);

Scan api that allows a module to scan the elements in a hash, set or sorted set key

Callback for scan implementation.

void scan_callback(RedisModuleKey *key, RedisModuleString* field, RedisModuleString* value, void *privdata);
  • key - the redis key context provided to for the scan.
  • field - field name, owned by the caller and need to be retained if used after this function.
  • value - value string or NULL for set type, owned by the caller and need to be retained if used after this function.
  • privdata - the user data provided to RedisModule_ScanKey.

The way it should be used:

 RedisModuleCursor *c = RedisModule_ScanCursorCreate();
 RedisModuleKey *key = RedisModule_OpenKey(...)
 while(RedisModule_ScanKey(key, c, callback, privateData));
 RedisModule_CloseKey(key);
 RedisModule_ScanCursorDestroy(c);

It is also possible to use this API from another thread while the lock is acquired during the actuall call to RedisModule_ScanKey, and re-opening the key each time:

 RedisModuleCursor *c = RedisModule_ScanCursorCreate();
 RedisModule_ThreadSafeContextLock(ctx);
 RedisModuleKey *key = RedisModule_OpenKey(...)
 while(RedisModule_ScanKey(ctx, c, callback, privateData)){
     RedisModule_CloseKey(key);
     RedisModule_ThreadSafeContextUnlock(ctx);
     // do some background job
     RedisModule_ThreadSafeContextLock(ctx);
     RedisModuleKey *key = RedisModule_OpenKey(...)
 }
 RedisModule_CloseKey(key);
 RedisModule_ScanCursorDestroy(c);

The function will return 1 if there are more elements to scan and 0 otherwise, possibly setting errno if the call failed. It is also possible to restart an existing cursor using RedisModule_ScanCursorRestart.

NOTE: Certain operations are unsafe while iterating the object. For instance while the API guarantees to return at least one time all the elements that are present in the data structure consistently from the start to the end of the iteration (see HSCAN and similar commands documentation), the more you play with the elements, the more duplicates you may get. In general deleting the current element of the data structure is safe, while removing the key you are iterating is not safe.

*Module fork API

*RedisModule_Fork

int RedisModule_Fork(RedisModuleForkDoneHandler cb, void *user_data);

Create a background child process with the current frozen snaphost of the main process where you can do some processing in the background without affecting / freezing the traffic and no need for threads and GIL locking. Note that Redis allows for only one concurrent fork. When the child wants to exit, it should call RedisModule_ExitFromChild. If the parent wants to kill the child it should call RedisModule_KillForkChild The done handler callback will be executed on the parent process when the child existed (but not when killed) Return: -1 on failure, on success the parent process will get a positive PID of the child, and the child process will get 0.

*RedisModule_SendChildHeartbeat

void RedisModule_SendChildHeartbeat(double progress);

The module is advised to call this function from the fork child once in a while, so that it can report progress and COW memory to the parent which will be reported in INFO. The progress argument should between 0 and 1, or -1 when not available.

*RedisModule_ExitFromChild

int RedisModule_ExitFromChild(int retcode);

Call from the child process when you want to terminate it. retcode will be provided to the done handler executed on the parent process.

*RedisModule_KillForkChild

int RedisModule_KillForkChild(int child_pid);

Can be used to kill the forked child process from the parent process. child_pid would be the return value of RedisModule_Fork.

*Server hooks implementation

*RedisModule_SubscribeToServerEvent

int RedisModule_SubscribeToServerEvent(RedisModuleCtx *ctx,
                                       RedisModuleEvent event,
                                       RedisModuleEventCallback callback);

Register to be notified, via a callback, when the specified server event happens. The callback is called with the event as argument, and an additional argument which is a void pointer and should be cased to a specific type that is event-specific (but many events will just use NULL since they do not have additional information to pass to the callback).

If the callback is NULL and there was a previous subscription, the module will be unsubscribed. If there was a previous subscription and the callback is not null, the old callback will be replaced with the new one.

The callback must be of this type:

int (*RedisModuleEventCallback)(RedisModuleCtx *ctx,
                                RedisModuleEvent eid,
                                uint64_t subevent,
                                void *data);

The 'ctx' is a normal Redis module context that the callback can use in order to call other modules APIs. The 'eid' is the event itself, this is only useful in the case the module subscribed to multiple events: using the 'id' field of this structure it is possible to check if the event is one of the events we registered with this callback. The 'subevent' field depends on the event that fired.

Finally the 'data' pointer may be populated, only for certain events, with more relevant data.

Here is a list of events you can use as 'eid' and related sub events:

  • RedisModuleEvent_ReplicationRoleChanged:

    This event is called when the instance switches from master to replica or the other way around, however the event is also called when the replica remains a replica but starts to replicate with a different master.

    The following sub events are available:

    • REDISMODULE_SUBEVENT_REPLROLECHANGED_NOW_MASTER
    • REDISMODULE_SUBEVENT_REPLROLECHANGED_NOW_REPLICA

    The 'data' field can be casted by the callback to a RedisModuleReplicationInfo structure with the following fields:

    int master; // true if master, false if replica
    char *masterhost; // master instance hostname for NOW_REPLICA
    int masterport; // master instance port for NOW_REPLICA
    char *replid1; // Main replication ID
    char *replid2; // Secondary replication ID
    uint64_t repl1_offset; // Main replication offset
    uint64_t repl2_offset; // Offset of replid2 validity
    
  • RedisModuleEvent_Persistence

    This event is called when RDB saving or AOF rewriting starts and ends. The following sub events are available:

    • REDISMODULE_SUBEVENT_PERSISTENCE_RDB_START
    • REDISMODULE_SUBEVENT_PERSISTENCE_AOF_START
    • REDISMODULE_SUBEVENT_PERSISTENCE_SYNC_RDB_START
    • REDISMODULE_SUBEVENT_PERSISTENCE_ENDED
    • REDISMODULE_SUBEVENT_PERSISTENCE_FAILED

    The above events are triggered not just when the user calls the relevant commands like BGSAVE, but also when a saving operation or AOF rewriting occurs because of internal server triggers. The SYNCRDBSTART sub events are happening in the forground due to SAVE command, FLUSHALL, or server shutdown, and the other RDB and AOF sub events are executed in a background fork child, so any action the module takes can only affect the generated AOF or RDB, but will not be reflected in the parent process and affect connected clients and commands. Also note that the AOF_START sub event may end up saving RDB content in case of an AOF with rdb-preamble.

  • RedisModuleEvent_FlushDB

    The FLUSHALL, FLUSHDB or an internal flush (for instance because of replication, after the replica synchronization) happened. The following sub events are available:

    • REDISMODULE_SUBEVENT_FLUSHDB_START
    • REDISMODULE_SUBEVENT_FLUSHDB_END

    The data pointer can be casted to a RedisModuleFlushInfo structure with the following fields:

    int32_t async;  // True if the flush is done in a thread.
                    // See for instance FLUSHALL ASYNC.
                    // In this case the END callback is invoked
                    // immediately after the database is put
                    // in the free list of the thread.
    int32_t dbnum;  // Flushed database number, -1 for all the DBs
                    // in the case of the FLUSHALL operation.
    

    The start event is called before the operation is initated, thus allowing the callback to call DBSIZE or other operation on the yet-to-free keyspace.

  • RedisModuleEvent_Loading

    Called on loading operations: at startup when the server is started, but also after a first synchronization when the replica is loading the RDB file from the master. The following sub events are available:

    • REDISMODULE_SUBEVENT_LOADING_RDB_START
    • REDISMODULE_SUBEVENT_LOADING_AOF_START
    • REDISMODULE_SUBEVENT_LOADING_REPL_START
    • REDISMODULE_SUBEVENT_LOADING_ENDED
    • REDISMODULE_SUBEVENT_LOADING_FAILED

    Note that AOF loading may start with an RDB data in case of rdb-preamble, in which case you'll only receive an AOF_START event.

  • RedisModuleEvent_ClientChange

    Called when a client connects or disconnects. The data pointer can be casted to a RedisModuleClientInfo structure, documented in RedisModule_GetClientInfoById(). The following sub events are available:

    • REDISMODULE_SUBEVENT_CLIENT_CHANGE_CONNECTED
    • REDISMODULE_SUBEVENT_CLIENT_CHANGE_DISCONNECTED
  • RedisModuleEvent_Shutdown

    The server is shutting down. No subevents are available.

  • RedisModuleEvent_ReplicaChange

    This event is called when the instance (that can be both a master or a replica) get a new online replica, or lose a replica since it gets disconnected. The following sub events are available:

    • REDISMODULE_SUBEVENT_REPLICA_CHANGE_ONLINE
    • REDISMODULE_SUBEVENT_REPLICA_CHANGE_OFFLINE

    No additional information is available so far: future versions of Redis will have an API in order to enumerate the replicas connected and their state.

  • RedisModuleEvent_CronLoop

    This event is called every time Redis calls the serverCron() function in order to do certain bookkeeping. Modules that are required to do operations from time to time may use this callback. Normally Redis calls this function 10 times per second, but this changes depending on the "hz" configuration. No sub events are available.

    The data pointer can be casted to a RedisModuleCronLoop structure with the following fields:

    int32_t hz;  // Approximate number of events per second.
    
  • RedisModuleEvent_MasterLinkChange

    This is called for replicas in order to notify when the replication link becomes functional (up) with our master, or when it goes down. Note that the link is not considered up when we just connected to the master, but only if the replication is happening correctly. The following sub events are available:

    • REDISMODULE_SUBEVENT_MASTER_LINK_UP
    • REDISMODULE_SUBEVENT_MASTER_LINK_DOWN
  • RedisModuleEvent_ModuleChange

    This event is called when a new module is loaded or one is unloaded. The following sub events are available:

    • REDISMODULE_SUBEVENT_MODULE_LOADED
    • REDISMODULE_SUBEVENT_MODULE_UNLOADED

    The data pointer can be casted to a RedisModuleModuleChange structure with the following fields:

    const char* module_name;  // Name of module loaded or unloaded.
    int32_t module_version;  // Module version.
    
  • RedisModuleEvent_LoadingProgress

    This event is called repeatedly called while an RDB or AOF file is being loaded. The following sub events are availble:

    • REDISMODULE_SUBEVENT_LOADING_PROGRESS_RDB
    • REDISMODULE_SUBEVENT_LOADING_PROGRESS_AOF

    The data pointer can be casted to a RedisModuleLoadingProgress structure with the following fields:

    int32_t hz;  // Approximate number of events per second.
    int32_t progress;  // Approximate progress between 0 and 1024,
                       // or -1 if unknown.
    
  • RedisModuleEvent_SwapDB

    This event is called when a SWAPDB command has been successfully Executed. For this event call currently there is no subevents available.

    The data pointer can be casted to a RedisModuleSwapDbInfo structure with the following fields:

    int32_t dbnum_first;    // Swap Db first dbnum
    int32_t dbnum_second;   // Swap Db second dbnum
    
  • RedisModuleEvent_ReplBackup

    Called when diskless-repl-load config is set to swapdb, And redis needs to backup the the current database for the possibility to be restored later. A module with global data and maybe with auxload and auxsave callbacks may need to use this notification to backup / restore / discard its globals. The following sub events are available:

    • REDISMODULE_SUBEVENT_REPL_BACKUP_CREATE
    • REDISMODULE_SUBEVENT_REPL_BACKUP_RESTORE
    • REDISMODULE_SUBEVENT_REPL_BACKUP_DISCARD
  • RedisModuleEvent_ForkChild

    Called when a fork child (AOFRW, RDBSAVE, module fork...) is born/dies The following sub events are available:

    • REDISMODULE_SUBEVENT_FORK_CHILD_BORN
    • REDISMODULE_SUBEVENT_FORK_CHILD_DIED

The function returns REDISMODULE_OK if the module was successfully subscribed for the specified event. If the API is called from a wrong context or unsupported event is given then REDISMODULE_ERR is returned.

*RedisModule_IsSubEventSupported

int RedisModule_IsSubEventSupported(RedisModuleEvent event, int64_t subevent);

For a given server event and subevent, return zero if the subevent is not supported and non-zero otherwise.

*Key eviction API

*RedisModule_SetLRU

int RedisModule_SetLRU(RedisModuleKey *key, mstime_t lru_idle);

Set the key last access time for LRU based eviction. not relevant if the servers's maxmemory policy is LFU based. Value is idle time in milliseconds. returns REDISMODULE_OK if the LRU was updated, REDISMODULE_ERR otherwise.

*RedisModule_GetLRU

int RedisModule_GetLRU(RedisModuleKey *key, mstime_t *lru_idle);

Gets the key last access time. Value is idletime in milliseconds or -1 if the server's eviction policy is LFU based. returns REDISMODULE_OK if when key is valid.

*RedisModule_SetLFU

int RedisModule_SetLFU(RedisModuleKey *key, long long lfu_freq);

Set the key access frequency. only relevant if the server's maxmemory policy is LFU based. The frequency is a logarithmic counter that provides an indication of the access frequencyonly (must be <= 255). returns REDISMODULE_OK if the LFU was updated, REDISMODULE_ERR otherwise.

*RedisModule_GetLFU

int RedisModule_GetLFU(RedisModuleKey *key, long long *lfu_freq);

Gets the key access frequency or -1 if the server's eviction policy is not LFU based. returns REDISMODULE_OK if when key is valid.

*Miscellaneous APIs

*RedisModule_GetContextFlagsAll

int RedisModule_GetContextFlagsAll();

Returns the full ContextFlags mask, using the return value the module can check if a certain set of flags are supported by the redis server version in use. Example:

   int supportedFlags = RM_GetContextFlagsAll();
   if (supportedFlags & REDISMODULE_CTX_FLAGS_MULTI) {
         // REDISMODULE_CTX_FLAGS_MULTI is supported
   } else{
         // REDISMODULE_CTX_FLAGS_MULTI is not supported
   }

*RedisModule_GetKeyspaceNotificationFlagsAll

int RedisModule_GetKeyspaceNotificationFlagsAll();

Returns the full KeyspaceNotification mask, using the return value the module can check if a certain set of flags are supported by the redis server version in use. Example:

   int supportedFlags = RM_GetKeyspaceNotificationFlagsAll();
   if (supportedFlags & REDISMODULE_NOTIFY_LOADED) {
         // REDISMODULE_NOTIFY_LOADED is supported
   } else{
         // REDISMODULE_NOTIFY_LOADED is not supported
   }

*RedisModule_GetServerVersion

int RedisModule_GetServerVersion();

Return the redis version in format of 0x00MMmmpp. Example for 6.0.7 the return value will be 0x00060007.

*RedisModule_GetTypeMethodVersion

int RedisModule_GetTypeMethodVersion();

Return the current redis-server runtime value of REDISMODULE_TYPE_METHOD_VERSION. You can use that when calling RedisModule_CreateDataType to know which fields of RedisModuleTypeMethods are gonna be supported and which will be ignored.

*RedisModule_ModuleTypeReplaceValue

int RedisModule_ModuleTypeReplaceValue(RedisModuleKey *key,
                                       moduleType *mt,
                                       void *new_value,
                                       void **old_value);

Replace the value assigned to a module type.

The key must be open for writing, have an existing value, and have a moduleType that matches the one specified by the caller.

Unlike RedisModule_ModuleTypeSetValue() which will free the old value, this function simply swaps the old value with the new value.

The function returns REDISMODULE_OK on success, REDISMODULE_ERR on errors such as:

  1. Key is not opened for writing.
  2. Key is not a module data type key.
  3. Key is a module datatype other than 'mt'.

If old_value is non-NULL, the old value is returned by reference.

*RedisModule_GetCommandKeys

int *RedisModule_GetCommandKeys(RedisModuleCtx *ctx,
                                RedisModuleString **argv,
                                int argc,
                                int *num_keys);

For a specified command, parse its arguments and return an array that contains the indexes of all key name arguments. This function is essnetially a more efficient way to do COMMAND GETKEYS.

A NULL return value indicates the specified command has no keys, or an error condition. Error conditions are indicated by setting errno as folllows:

  • ENOENT: Specified command does not exist.
  • EINVAL: Invalid command arity specified.

NOTE: The returned array is not a Redis Module object so it does not get automatically freed even when auto-memory is used. The caller must explicitly call RedisModule_Free() to free it.

*Defrag API

*RedisModule_RegisterDefragFunc

int RedisModule_RegisterDefragFunc(RedisModuleCtx *ctx,
                                   RedisModuleDefragFunc cb);

Register a defrag callback for global data, i.e. anything that the module may allocate that is not tied to a specific data type.

*RedisModule_DefragShouldStop

int RedisModule_DefragShouldStop(RedisModuleDefragCtx *ctx);

When the data type defrag callback iterates complex structures, this function should be called periodically. A zero (false) return indicates the callback may continue its work. A non-zero value (true) indicates it should stop.

When stopped, the callback may use RedisModule_DefragCursorSet() to store its position so it can later use RedisModule_DefragCursorGet() to resume defragging.

When stopped and more work is left to be done, the callback should return 1. Otherwise, it should return 0.

NOTE: Modules should consider the frequency in which this function is called, so it generally makes sense to do small batches of work in between calls.

*RedisModule_DefragCursorSet

int RedisModule_DefragCursorSet(RedisModuleDefragCtx *ctx,
                                unsigned long cursor);

Store an arbitrary cursor value for future re-use.

This should only be called if RedisModule_DefragShouldStop() has returned a non-zero value and the defrag callback is about to exit without fully iterating its data type.

This behavior is reserved to cases where late defrag is performed. Late defrag is selected for keys that implement the free_effort callback and return a free_effort value that is larger than the defrag 'active-defrag-max-scan-fields' configuration directive.

Smaller keys, keys that do not implement free_effort or the global defrag callback are not called in late-defrag mode. In those cases, a call to this function will return REDISMODULE_ERR.

The cursor may be used by the module to represent some progress into the module's data type. Modules may also store additional cursor-related information locally and use the cursor as a flag that indicates when traversal of a new key begins. This is possible because the API makes a guarantee that concurrent defragmentation of multiple keys will not be performed.

*RedisModule_DefragCursorGet

int RedisModule_DefragCursorGet(RedisModuleDefragCtx *ctx,
                                unsigned long *cursor);

Fetch a cursor value that has been previously stored using RedisModule_DefragCursorSet().

If not called for a late defrag operation, REDISMODULE_ERR will be returned and the cursor should be ignored. See RedisModule_DefragCursorSet() for more details on defrag cursors.

*RedisModule_DefragAlloc

void *RedisModule_DefragAlloc(RedisModuleDefragCtx *ctx, void *ptr);

Defrag a memory allocation previously allocated by RedisModule_Alloc, RedisModule_Calloc, etc. The defragmentation process involves allocating a new memory block and copying the contents to it, like realloc().

If defragmentation was not necessary, NULL is returned and the operation has no other effect.

If a non-NULL value is returned, the caller should use the new pointer instead of the old one and update any reference to the old pointer, which must not be used again.

*RedisModule_DefragRedisModuleString

RedisModuleString *RedisModule_DefragRedisModuleString(RedisModuleDefragCtx *ctx,
                                                       RedisModuleString *str);

Defrag a RedisModuleString previously allocated by RedisModule_Alloc, RedisModule_Calloc, etc. See RedisModule_DefragAlloc() for more information on how the defragmentation process works.

NOTE: It is only possible to defrag strings that have a single reference. Typically this means strings retained with RedisModule_RetainString or RedisModule_HoldString may not be defragmentable. One exception is command argvs which, if retained by the module, will end up with a single reference (because the reference on the Redis side is dropped as soon as the command callback returns).

*Function index