Offrez de meilleures expériences évolutives grâce à une mise en cache accessible. Une qualité supérieure conçue par les développeurs à l’origine de Redis open source.
res11 = r.json().set("newbike", "$", ["Deimos", {"crashes": 0}, None])
print(res11) # >>> True
res12 = r.json().get("newbike", "$")
print(res12) # >>> ['["Deimos", { "crashes": 0 }, null]']
res13 = r.json().get("newbike", "$[1].crashes")
print(res13) # >>> ['0']
res14 = r.json().delete("newbike", "$.[-1]")
print(res14) # >>> [1]
res15 = r.json().get("newbike", "$")
print(res15) # >>> [['Deimos', {'crashes': 0}]]
Les meilleurs résultats ? Déjà, ceux que vous cherchiez. Rendez votre application d’IA plus intelligente et plus rapide avec une recherche documentaire optimisée, des systèmes de recommandations, une mise en cache sémantique et une génération augmentée de récupération (RAG).
# Create a vector index using the HNSW algorithm, 768 dimension length, and inner product distance metric
> FT.CREATE idx-videos ON HASH PREFIX 1 video: SCHEMA content_vector VECTOR HNSW 6 TYPE FLOAT32 DIM 768 DISTANCE_METRIC IP content TEXT metadata TEXT
# Add a video vector with metadata
> HSET video:0 content_vector "\xa4q\t=\xc1\xdes\xbdZ$<\xbd\xd5\xc1\x99<b\xf0\xf2<x[...\xf8<" content "SUMMARY:\nThe video discusses the limitations of MySQL at scale and introduces Redis Enterprise" metadata "{\"id\":\"FQzlq91g7mg\",\"link\":\"https://www.youtube.com/watch?v=FQzlq91g7mg\",\"title\":\"Redis + MySQL in 60 Seconds\"}"
(integer) 3
# Search for videos using a similar vector and the K-nearest neighbors algorithm
> FT.SEARCH idx-videos "* => [KNN 3 @content_vector $vector AS vector_score]" RETURN 3 metadata content vector_score SORTBY vector_score LIMIT 0 3 PARAMS 2 vector "\b[\xb7;\x81\x12\x9c\xbc\xc6!...\xfe<" DIALECT 2
Utilisez Redis comme base de données NoSQL pour créer des applications rapides et fiables, avec une disponibilité 99,999 % du temps sans effort.
# Create an index. In this example, all JSON documents with the key prefix 'user:' will be indexed.
rs = r.ft("idx:users")
rs.create_index(
schema,
definition=IndexDefinition(
prefix=["user:"], index_type=IndexType.JSON
)
)
# Use JSON.SET to set each user value at the specified path.
r.json().set("user:1", Path.root_path(), user1)
r.json().set("user:2", Path.root_path(), user2)
r.json().set("user:3", Path.root_path(), user3)
# Find the user Paul and filter the results by age.
res = rs.search(
Query("Paul @age:[30 40]")
)
# Result:
# {1 total, docs: [Document {'id': 'user:3', 'payload': None, 'json': '{"name":"Paul Zamir","email":"paul.zamir@example.com","age":35,"city":"Tel Aviv"}'}]}
# b'OK'
res11 = r.json().set("newbike", "$", ["Deimos", {"crashes": 0}, None])
print(res11) # >>> True
res12 = r.json().get("newbike", "$")
print(res12) # >>> ['["Deimos", { "crashes": 0 }, null]']
res13 = r.json().get("newbike", "$[1].crashes")
print(res13) # >>> ['0']
res14 = r.json().delete("newbike", "$.[-1]")
print(res14) # >>> [1]
res15 = r.json().get("newbike", "$")
print(res15) # >>> [['Deimos', {'crashes': 0}]]