LLMCache
The LLMCache APIs
SemanticCache
class SemanticCache(name='llmcache', prefix=None, distance_threshold=0.1, ttl=None, vectorizer=HFTextVectorizer(model='sentence-transformers/all-mpnet-base-v2', dims=768, client=SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) (2): Normalize() )), redis_client=None, redis_url='redis://localhost:6379', connection_args={}, **kwargs)
Bases: BaseLLMCache
Semantic Cache for Large Language Models.
Semantic Cache for Large Language Models.
- Parameters:
- name (str , optional) – The name of the semantic cache search index. Defaults to “llmcache”.
- prefix (Optional *[*str ] , optional) – The prefix for Redis keys associated with the semantic cache search index. Defaults to None, and the index name will be used as the key prefix.
- distance_threshold (float , optional) – Semantic threshold for the cache. Defaults to 0.1.
- ttl (Optional *[*int ] , optional) – The time-to-live for records cached in Redis. Defaults to None.
- vectorizer (BaseVectorizer , optional) – The vectorizer for the cache. Defaults to HFTextVectorizer.
- redis_client (Redis , optional) – A redis client connection instance. Defaults to None.
- redis_url (str , optional) – The redis url. Defaults to “redis://localhost:6379”.
- connection_args (Dict *[*str , Any ] , optional) – The connection arguments for the redis client. Defaults to None.
- Raises:
- TypeError – If an invalid vectorizer is provided.
- TypeError – If the TTL value is not an int.
- ValueError – If the threshold is not between 0 and 1.
- ValueError – If the index name is not provided
check(prompt=None, vector=None, num_results=1, return_fields=None)
Checks the semantic cache for results similar to the specified prompt or vector.
This method searches the cache using vector similarity with either a raw text prompt (converted to a vector) or a provided vector as input. It checks for semantically similar prompts and fetches the cached LLM responses.
- Parameters:
- prompt (Optional *[*str ] , optional) – The text prompt to search for in the cache.
- vector (Optional *[*List *[*float ] ] , optional) – The vector representation of the prompt to search for in the cache.
- num_results (int , optional) – The number of cached results to return. Defaults to 1.
- return_fields (Optional *[*List *[*str ] ] , optional) – The fields to include in each returned result. If None, defaults to all available fields in the cached entry.
-
- Returns:
- A list of dicts containing the requested
- return fields for each similar cached response.
- Return type: List[Dict[str, Any]]
- Raises:
- ValueError – If neither a prompt nor a vector is specified.
- TypeError – If return_fields is not a list when provided.
response = cache.check(
prompt="What is the captial city of France?"
)
clear()
Clear the cache of all keys while preserving the index.
- Return type: None
delete()
Clear the semantic cache of all keys and remove the underlying search index.
- Return type: None
deserialize(metadata)
Deserialize the input from a string.
- Parameters: metadata (str) –
- Return type: Dict[str, Any]
hash_input(prompt)
Hashes the input using SHA256.
- Parameters: prompt (str) –
serialize(metadata)
Serlize the input into a string.
- Parameters: metadata (Dict *[*str , Any ]) –
- Return type: str
set_threshold(distance_threshold)
Sets the semantic distance threshold for the cache.
- Parameters: distance_threshold (float) – The semantic distance threshold for the cache.
- Raises: ValueError – If the threshold is not between 0 and 1.
- Return type: None
set_ttl(ttl=None)
Set the default TTL, in seconds, for entries in the cache.
- Parameters: ttl (Optional *[*int ] , optional) – The optional time-to-live expiration for the cache, in seconds.
- Raises: ValueError – If the time-to-live value is not an integer.
set_vectorizer(vectorizer)
Sets the vectorizer for the LLM cache.
Must be a valid subclass of BaseVectorizer and have equivalent dimensions to the vector field defined in the schema.
- Parameters: vectorizer (BaseVectorizer) – The RedisVL vectorizer to use for vectorizing cache entries.
- Raises:
- TypeError – If the vectorizer is not a valid type.
- ValueError – If the vector dimensions are mismatched.
- Return type: None
store(prompt, response, vector=None, metadata=None)
Stores the specified key-value pair in the cache along with metadata.
- Parameters:
- prompt (str) – The user prompt to cache.
- response (str) – The LLM response to cache.
- vector (Optional *[*List *[*float ] ] , optional) – The prompt vector to cache. Defaults to None, and the prompt vector is generated on demand.
- metadata (Optional *[*dict ] , optional) – The optional metadata to cache alongside the prompt and response. Defaults to None.
- Returns: The Redis key for the entries added to the semantic cache.
- Return type: str
- Raises:
- ValueError – If neither prompt nor vector is specified.
- TypeError – If provided metadata is not a dictionary.
key = cache.store(
prompt="What is the captial city of France?",
response="Paris",
metadata={"city": "Paris", "country": "France"}
)
property distance_threshold : float
The semantic distance threshold for the cache.
- Returns: The semantic distance threshold.
- Return type: float
property index : SearchIndex
The underlying SearchIndex for the cache.
- Returns: The search index.
- Return type: SearchIndex
property ttl : int | None
The default TTL, in seconds, for entries in the cache.