LLM Cache

SemanticCache

class SemanticCache(name='llmcache', distance_threshold=0.1, ttl=None, vectorizer=None, filterable_fields=None, redis_client=None, redis_url='redis://localhost:6379', connection_kwargs={}, overwrite=False, **kwargs)

Bases: BaseLLMCache

Semantic Cache for Large Language Models.

Semantic Cache for Large Language Models.

  • Parameters:
    • name (str , optional) – The name of the semantic cache search index. Defaults to “llmcache”.
    • distance_threshold (float , optional) – Semantic threshold for the cache. Defaults to 0.1.
    • ttl (Optional [ int ] , optional) – The time-to-live for records cached in Redis. Defaults to None.
    • vectorizer (Optional [ BaseVectorizer ] , optional) – The vectorizer for the cache. Defaults to HFTextVectorizer.
    • filterable_fields (Optional [ List [ Dict [ str , Any ] ] ]) – An optional list of RedisVL fields that can be used to customize cache retrieval with filters.
    • redis_client (Optional [ Redis ] , optional) – A redis client connection instance. Defaults to None.
    • redis_url (str , optional) – The redis url. Defaults to redis://localhost:6379.
    • connection_kwargs (Dict [ str , Any ]) – The connection arguments for the redis client. Defaults to empty {}.
    • overwrite (bool) – Whether or not to force overwrite the schema for the semantic cache index. Defaults to false.
  • Raises:
    • TypeError – If an invalid vectorizer is provided.
    • TypeError – If the TTL value is not an int.
    • ValueError – If the threshold is not between 0 and 1.
    • ValueError – If existing schema does not match new schema and overwrite is False.

async acheck(prompt=None, vector=None, num_results=1, return_fields=None, filter_expression=None, distance_threshold=None)

Async check the semantic cache for results similar to the specified prompt or vector.

This method searches the cache using vector similarity with either a raw text prompt (converted to a vector) or a provided vector as input. It checks for semantically similar prompts and fetches the cached LLM responses.

  • Parameters:
    • prompt (Optional [ str ] , optional) – The text prompt to search for in the cache.
    • vector (Optional [ List [ float ] ] , optional) – The vector representation of the prompt to search for in the cache.
    • num_results (int , optional) – The number of cached results to return. Defaults to 1.
    • return_fields (Optional [ List [ str ] ] , optional) – The fields to include in each returned result. If None, defaults to all available fields in the cached entry.
    • filter_expression (Optional [FilterExpression ]) – Optional filter expression that can be used to filter cache results. Defaults to None and the full cache will be searched.
    • distance_threshold (Optional [ float ]) – The threshold for semantic vector distance.
  • Returns:
    A list of dicts containing the requested
    return fields for each similar cached response.
  • Return type: List[Dict[str, Any]]
  • Raises:
    • ValueError – If neither a prompt nor a vector is specified.
    • ValueError – if ‘vector’ has incorrect dimensions.
    • TypeError – If return_fields is not a list when provided.
response = await cache.acheck(
    prompt="What is the captial city of France?"
)

async adrop(ids=None, keys=None)

Async expire specific entries from the cache by id or specific Redis key.

  • Parameters:
    • ids (Optional [ str ]) – The document ID or IDs to remove from the cache.
    • keys (Optional [ str ]) – The Redis keys to remove from the cache.
  • Return type: None

async astore(prompt, response, vector=None, metadata=None, filters=None, ttl=None)

Async stores the specified key-value pair in the cache along with metadata.

  • Parameters:
    • prompt (str) – The user prompt to cache.
    • response (str) – The LLM response to cache.
    • vector (Optional [ List [ float ] ] , optional) – The prompt vector to cache. Defaults to None, and the prompt vector is generated on demand.
    • metadata (Optional [ Dict [ str , Any ] ] , optional) – The optional metadata to cache alongside the prompt and response. Defaults to None.
    • filters (Optional [ Dict [ str , Any ] ]) – The optional tag to assign to the cache entry. Defaults to None.
    • ttl (Optional [ int ]) – The optional TTL override to use on this individual cache entry. Defaults to the global TTL setting.
  • Returns: The Redis key for the entries added to the semantic cache.
  • Return type: str
  • Raises:
    • ValueError – If neither prompt nor vector is specified.
    • ValueError – if vector has incorrect dimensions.
    • TypeError – If provided metadata is not a dictionary.
key = await cache.astore(
    prompt="What is the captial city of France?",
    response="Paris",
    metadata={"city": "Paris", "country": "France"}
)

async aupdate(key, **kwargs)

Async update specific fields within an existing cache entry. If no fields are passed, then only the document TTL is refreshed.

  • Parameters: key (str) – the key of the document to update using kwargs.
  • Raises:
    • ValueError if an incorrect mapping is provided as a kwarg.
    • TypeError if metadata is provided and not of type dict.
  • Return type: None
key = await cache.astore('this is a prompt', 'this is a response')
await cache.aupdate(
    key,
    metadata={"hit_count": 1, "model_name": "Llama-2-7b"}
)

check(prompt=None, vector=None, num_results=1, return_fields=None, filter_expression=None, distance_threshold=None)

Checks the semantic cache for results similar to the specified prompt or vector.

This method searches the cache using vector similarity with either a raw text prompt (converted to a vector) or a provided vector as input. It checks for semantically similar prompts and fetches the cached LLM responses.

  • Parameters:
    • prompt (Optional [ str ] , optional) – The text prompt to search for in the cache.
    • vector (Optional [ List [ float ] ] , optional) – The vector representation of the prompt to search for in the cache.
    • num_results (int , optional) – The number of cached results to return. Defaults to 1.
    • return_fields (Optional [ List [ str ] ] , optional) – The fields to include in each returned result. If None, defaults to all available fields in the cached entry.
    • filter_expression (Optional [FilterExpression ]) – Optional filter expression that can be used to filter cache results. Defaults to None and the full cache will be searched.
    • distance_threshold (Optional [ float ]) – The threshold for semantic vector distance.
  • Returns:
    A list of dicts containing the requested
    return fields for each similar cached response.
  • Return type: List[Dict[str, Any]]
  • Raises:
    • ValueError – If neither a prompt nor a vector is specified.
    • ValueError – if ‘vector’ has incorrect dimensions.
    • TypeError – If return_fields is not a list when provided.
response = cache.check(
    prompt="What is the captial city of France?"
)

clear()

Clear the cache of all keys while preserving the index.

  • Return type: None

delete()

Clear the semantic cache of all keys and remove the underlying search index.

  • Return type: None

drop(ids=None, keys=None)

Manually expire specific entries from the cache by id or specific Redis key.

  • Parameters:
    • ids (Optional [ str ]) – The document ID or IDs to remove from the cache.
    • keys (Optional [ str ]) – The Redis keys to remove from the cache.
  • Return type: None

set_threshold(distance_threshold)

Sets the semantic distance threshold for the cache.

  • Parameters: distance_threshold (float) – The semantic distance threshold for the cache.
  • Raises: ValueError – If the threshold is not between 0 and 1.
  • Return type: None

set_ttl(ttl=None)

Set the default TTL, in seconds, for entries in the cache.

  • Parameters: ttl (Optional [ int ] , optional) – The optional time-to-live expiration for the cache, in seconds.
  • Raises: ValueError – If the time-to-live value is not an integer.

store(prompt, response, vector=None, metadata=None, filters=None, ttl=None)

Stores the specified key-value pair in the cache along with metadata.

  • Parameters:
    • prompt (str) – The user prompt to cache.
    • response (str) – The LLM response to cache.
    • vector (Optional [ List [ float ] ] , optional) – The prompt vector to cache. Defaults to None, and the prompt vector is generated on demand.
    • metadata (Optional [ Dict [ str , Any ] ] , optional) – The optional metadata to cache alongside the prompt and response. Defaults to None.
    • filters (Optional [ Dict [ str , Any ] ]) – The optional tag to assign to the cache entry. Defaults to None.
    • ttl (Optional [ int ]) – The optional TTL override to use on this individual cache entry. Defaults to the global TTL setting.
  • Returns: The Redis key for the entries added to the semantic cache.
  • Return type: str
  • Raises:
    • ValueError – If neither prompt nor vector is specified.
    • ValueError – if vector has incorrect dimensions.
    • TypeError – If provided metadata is not a dictionary.
key = cache.store(
    prompt="What is the captial city of France?",
    response="Paris",
    metadata={"city": "Paris", "country": "France"}
)

update(key, **kwargs)

Update specific fields within an existing cache entry. If no fields are passed, then only the document TTL is refreshed.

  • Parameters: key (str) – the key of the document to update using kwargs.
  • Raises:
    • ValueError if an incorrect mapping is provided as a kwarg.
    • TypeError if metadata is provided and not of type dict.
  • Return type: None
key = cache.store('this is a prompt', 'this is a response')
cache.update(key, metadata={"hit_count": 1, "model_name": "Llama-2-7b"})
)

property aindex: AsyncSearchIndex | None

The underlying AsyncSearchIndex for the cache.

property distance_threshold: float

The semantic distance threshold for the cache.

  • Returns: The semantic distance threshold.
  • Return type: float

property index: SearchIndex

The underlying SearchIndex for the cache.

property ttl: int | None

The default TTL, in seconds, for entries in the cache.

RATE THIS PAGE
Back to top ↑